Rapid calculation of acoustic fields from arbitrary continuous-wave sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU126834" target="_blank" >RIV/00216305:26230/18:PU126834 - isvavai.cz</a>
Výsledek na webu
<a href="http://asa.scitation.org/doi/10.1121/1.5021245" target="_blank" >http://asa.scitation.org/doi/10.1121/1.5021245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1121/1.5021245" target="_blank" >10.1121/1.5021245</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rapid calculation of acoustic fields from arbitrary continuous-wave sources
Popis výsledku v původním jazyce
An efficient Greens function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Greens function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions at any time t > 0 to be calculated in a single step without numerical integration. In total, the extraction of the steady state amplitude and phase of the resulting wave field over the complete 3D domain of interest can be calculated using four fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically-focused bowl transducers, and multi-element linear and hemispherical arrays.
Název v anglickém jazyce
Rapid calculation of acoustic fields from arbitrary continuous-wave sources
Popis výsledku anglicky
An efficient Greens function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Greens function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions at any time t > 0 to be calculated in a single step without numerical integration. In total, the extraction of the steady state amplitude and phase of the resulting wave field over the complete 3D domain of interest can be calculated using four fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically-focused bowl transducers, and multi-element linear and hemispherical arrays.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Acoustical Society of America
ISSN
0001-4966
e-ISSN
1520-8524
Svazek periodika
143
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
529-537
Kód UT WoS článku
000424014800060
EID výsledku v databázi Scopus
2-s2.0-85041305665