Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Noise-robust speech triage

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU127787" target="_blank" >RIV/00216305:26230/18:PU127787 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://asa.scitation.org/doi/10.1121/1.5031029" target="_blank" >https://asa.scitation.org/doi/10.1121/1.5031029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1121/1.5031029" target="_blank" >10.1121/1.5031029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Noise-robust speech triage

  • Popis výsledku v původním jazyce

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (10 dB SNR < 10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR10 dB).

  • Název v anglickém jazyce

    Noise-robust speech triage

  • Popis výsledku anglicky

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (10 dB SNR < 10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR10 dB).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VI20152020025" target="_blank" >VI20152020025: Dolování infoRmAcí z řeči Pořízené vzdÁlenými miKrofony - DRAPÁK</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of the Acoustical Society of America

  • ISSN

    0001-4966

  • e-ISSN

    1520-8524

  • Svazek periodika

    143

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    2313-2320

  • Kód UT WoS článku

    000430570900039

  • EID výsledku v databázi Scopus

    2-s2.0-85045888415