GPU-accelerated Simulation of Elastic Wave Propagation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130694" target="_blank" >RIV/00216305:26230/18:PU130694 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8514349" target="_blank" >https://ieeexplore.ieee.org/document/8514349</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/HPCS.2018.00044" target="_blank" >10.1109/HPCS.2018.00044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPU-accelerated Simulation of Elastic Wave Propagation
Popis výsledku v původním jazyce
Modeling of ultrasound waves propagation in hard biological materials such as bones and skull has a rapidly growing area of applications, e.g. brain cancer treatment planing, deep brain neurostimulation and neuromodulation, and opening blood brain barriers. Recently, we have developed a novel numerical model of elastic wave propagation based on the Kelvin-Voigt model accounting for linear elastic wave proration in heterogeneous absorption media. Although, the model offers unprecedented fidelity, its computational requirements have been prohibitive for realistic simulations. This paper presents an optimized version of the simulation model accelerated by the Nvidia CUDA language and deployed on the best GPUs including the Nvidia P100 accelerators present in the Piz Daint supercomputer. The native CUDA code reaches a speed-up of 5.4 when compared to the Matlab prototype accelerated by the Parallel Computing Toolbox running on the same GPU. Such reduction in computation time enables computation of large-scale treatment plans in terms of hours.
Název v anglickém jazyce
GPU-accelerated Simulation of Elastic Wave Propagation
Popis výsledku anglicky
Modeling of ultrasound waves propagation in hard biological materials such as bones and skull has a rapidly growing area of applications, e.g. brain cancer treatment planing, deep brain neurostimulation and neuromodulation, and opening blood brain barriers. Recently, we have developed a novel numerical model of elastic wave propagation based on the Kelvin-Voigt model accounting for linear elastic wave proration in heterogeneous absorption media. Although, the model offers unprecedented fidelity, its computational requirements have been prohibitive for realistic simulations. This paper presents an optimized version of the simulation model accelerated by the Nvidia CUDA language and deployed on the best GPUs including the Nvidia P100 accelerators present in the Piz Daint supercomputer. The native CUDA code reaches a speed-up of 5.4 when compared to the Matlab prototype accelerated by the Parallel Computing Toolbox running on the same GPU. Such reduction in computation time enables computation of large-scale treatment plans in terms of hours.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018
ISBN
978-1-5386-7878-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
188-195
Název nakladatele
IEEE Computer Society
Místo vydání
Orleans
Místo konání akce
Orléans, France
Datum konání akce
16. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450677700028