Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speaker Diarization based on Bayesian HMM with Eigenvoice Priors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130759" target="_blank" >RIV/00216305:26230/18:PU130759 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/11786/" target="_blank" >https://www.fit.vut.cz/research/publication/11786/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Odyssey.2018-21" target="_blank" >10.21437/Odyssey.2018-21</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speaker Diarization based on Bayesian HMM with Eigenvoice Priors

  • Popis výsledku v původním jazyce

    Nowadays, most speaker diarization methods address the task in two steps: segmentation of the input conversation into (preferably) speaker homogeneous segments, and clustering. Generally, different models and techniques are used for the two steps. In this paper we present a very elegant approach where a straightforward and efficient Variational Bayes (VB) inference in a single probabilistic model addresses the complete SD problem. Our model is a Bayesian Hidden Markov Model, in which states represent speaker specific distributions and transitions between states represent speaker turns. As in the ivector or JFA models, speaker distributions are modeled by GMMs with parameters constrained by eigenvoice priors. This allows to robustly estimate the speaker models from very short speech segments. The model, which was released as open source code and has already been used by several labs, is fully described for the first time in this paper. We present results and the system is compared and combined with other state-of-the-art approaches. The model provides the best results reported so far on the CALLHOME dataset.

  • Název v anglickém jazyce

    Speaker Diarization based on Bayesian HMM with Eigenvoice Priors

  • Popis výsledku anglicky

    Nowadays, most speaker diarization methods address the task in two steps: segmentation of the input conversation into (preferably) speaker homogeneous segments, and clustering. Generally, different models and techniques are used for the two steps. In this paper we present a very elegant approach where a straightforward and efficient Variational Bayes (VB) inference in a single probabilistic model addresses the complete SD problem. Our model is a Bayesian Hidden Markov Model, in which states represent speaker specific distributions and transitions between states represent speaker turns. As in the ivector or JFA models, speaker distributions are modeled by GMMs with parameters constrained by eigenvoice priors. This allows to robustly estimate the speaker models from very short speech segments. The model, which was released as open source code and has already been used by several labs, is fully described for the first time in this paper. We present results and the system is compared and combined with other state-of-the-art approaches. The model provides the best results reported so far on the CALLHOME dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Odyssey 2018

  • ISBN

  • ISSN

    2312-2846

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    147-154

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Les Sables d´Olonne

  • Místo konání akce

    Les Sables d'Olonne, France

  • Datum konání akce

    26. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku