Analysis of BUT-PT Submission for NIST LRE 2017
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130760" target="_blank" >RIV/00216305:26230/18:PU130760 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/groups/speech/publi/2018/plchot_odyssey2018_69.pdf" target="_blank" >http://www.fit.vutbr.cz/research/groups/speech/publi/2018/plchot_odyssey2018_69.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of BUT-PT Submission for NIST LRE 2017
Popis výsledku v původním jazyce
In this paper, we summarize our efforts in the NIST Language Recognition Evaluations (LRE) 2017 which resulted in systems providing very competitive and state-of-the-art performance. We provide both the descriptions and the analysis of the systems that we included in our submission. We explain our partitioning of the datasets that we were provided by NIST for training and development, and we follow by describing the features, DNN models and classifiers that were used to produce the final systems. After covering the architecture of our submission, we concentrate on post-evaluation analysis. We compare different DNN Bottle-Neck features, i-vector systems of different sizes and architectures, different classifiers and we present experimental results with data augmentation and with improved architecture of the system based on DNN embeddings. We present the performance of the systems in the Fixed condition (where participants are required to use only predefined data sets) and in addition to official NIST LRE17 evaluation set, we also provide results on our internal development set which can serve as a baseline for other researchers, since all training data are fixed and provided by NIST.
Název v anglickém jazyce
Analysis of BUT-PT Submission for NIST LRE 2017
Popis výsledku anglicky
In this paper, we summarize our efforts in the NIST Language Recognition Evaluations (LRE) 2017 which resulted in systems providing very competitive and state-of-the-art performance. We provide both the descriptions and the analysis of the systems that we included in our submission. We explain our partitioning of the datasets that we were provided by NIST for training and development, and we follow by describing the features, DNN models and classifiers that were used to produce the final systems. After covering the architecture of our submission, we concentrate on post-evaluation analysis. We compare different DNN Bottle-Neck features, i-vector systems of different sizes and architectures, different classifiers and we present experimental results with data augmentation and with improved architecture of the system based on DNN embeddings. We present the performance of the systems in the Fixed condition (where participants are required to use only predefined data sets) and in addition to official NIST LRE17 evaluation set, we also provide results on our internal development set which can serve as a baseline for other researchers, since all training data are fixed and provided by NIST.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop
ISBN
—
ISSN
2312-2846
e-ISSN
—
Počet stran výsledku
7
Strana od-do
47-53
Název nakladatele
International Speech Communication Association
Místo vydání
Les Sables d'Olonne
Místo konání akce
Les Sables d'Olonne, France
Datum konání akce
26. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—