Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convolutional Neural Networks and X-Vector Embedding for DCASE2018 Acoustic Scene Classification Challenge

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130803" target="_blank" >RIV/00216305:26230/18:PU130803 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dcase.community/documents/workshop2018/proceedings/DCASE2018Workshop_Zeinali_149.pdf" target="_blank" >http://dcase.community/documents/workshop2018/proceedings/DCASE2018Workshop_Zeinali_149.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convolutional Neural Networks and X-Vector Embedding for DCASE2018 Acoustic Scene Classification Challenge

  • Popis výsledku v původním jazyce

    In this paper, the Brno University of Technology (BUT) team submissions for Task 1 (Acoustic Scene Classification, ASC) of the DCASE-2018 challenge are described. Also, the analysis of different methods on the leaderboard set is provided. The proposed approach is a fusion of two different Convolutional Neural Network (CNN) topologies. The first one is the common two-dimensional CNNs which is mainly used in image classification. The second one is a one-dimensional CNN for extracting fixed-length audio segment embeddings, so called x-vectors, which has also been used in speech processing, especially for speaker recognition. In addition to the different topologies, two types of features were tested: log mel-spectrogram and CQT features. Finally, the outputs of different systems are fused using a simple output averaging in the best performing system. Our submissions ranked third among 24 teams in the ASC sub-task A (task1a).

  • Název v anglickém jazyce

    Convolutional Neural Networks and X-Vector Embedding for DCASE2018 Acoustic Scene Classification Challenge

  • Popis výsledku anglicky

    In this paper, the Brno University of Technology (BUT) team submissions for Task 1 (Acoustic Scene Classification, ASC) of the DCASE-2018 challenge are described. Also, the analysis of different methods on the leaderboard set is provided. The proposed approach is a fusion of two different Convolutional Neural Network (CNN) topologies. The first one is the common two-dimensional CNNs which is mainly used in image classification. The second one is a one-dimensional CNN for extracting fixed-length audio segment embeddings, so called x-vectors, which has also been used in speech processing, especially for speaker recognition. In addition to the different topologies, two types of features were tested: log mel-spectrogram and CQT features. Finally, the outputs of different systems are fused using a simple output averaging in the best performing system. Our submissions ranked third among 24 teams in the ASC sub-task A (task1a).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of DCASE 2018 Workshop

  • ISBN

    978-952-15-4262-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Název nakladatele

    Tampere University of Technology

  • Místo vydání

    Surrey

  • Místo konání akce

    Surrey

  • Datum konání akce

    19. 11. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku