Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the use of DNN Autoencoder for Robust Speaker Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU135244" target="_blank" >RIV/00216305:26230/18:PU135244 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/11855/" target="_blank" >https://www.fit.vut.cz/research/publication/11855/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the use of DNN Autoencoder for Robust Speaker Recognition

  • Popis výsledku v původním jazyce

    In this paper, we present an analysis of a DNN-based autoencoder for speech enhancement, dereverberation and denoising. The target application is a robust speaker recognition system. We started with augmenting the Fisher database with artificially noised and reverberated data and we trained the autoencoder to map noisy and reverberated speech to its clean version. We use the autoencoder as a preprocessing step for a stateof- the-art text-independent speaker recognition system. We compare results achieved with pure autoencoder enhancement, multi-condition PLDA training and their simultaneous use. We present a detailed analysis with various conditions of NIST SRE 2010, PRISM and artificially corrupted NIST SRE 2010 telephone condition. We conclude that the proposed preprocessing significantly outperforms the baseline and that this technique can be used to build a robust speaker recognition system for reverberated and noisy data.

  • Název v anglickém jazyce

    On the use of DNN Autoencoder for Robust Speaker Recognition

  • Popis výsledku anglicky

    In this paper, we present an analysis of a DNN-based autoencoder for speech enhancement, dereverberation and denoising. The target application is a robust speaker recognition system. We started with augmenting the Fisher database with artificially noised and reverberated data and we trained the autoencoder to map noisy and reverberated speech to its clean version. We use the autoencoder as a preprocessing step for a stateof- the-art text-independent speaker recognition system. We compare results achieved with pure autoencoder enhancement, multi-condition PLDA training and their simultaneous use. We present a detailed analysis with various conditions of NIST SRE 2010, PRISM and artificially corrupted NIST SRE 2010 telephone condition. We conclude that the proposed preprocessing significantly outperforms the baseline and that this technique can be used to build a robust speaker recognition system for reverberated and noisy data.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů