Family Coat of Arms and Armorial Achievement Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132055" target="_blank" >RIV/00216305:26230/19:PU132055 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11848/" target="_blank" >https://www.fit.vut.cz/research/publication/11848/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-16660-1_56" target="_blank" >10.1007/978-3-030-16660-1_56</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Family Coat of Arms and Armorial Achievement Classification
Popis výsledku v původním jazyce
This paper presents an approach to classification of family coats of arms and armorial achievement. It is difficult to obtain images with coats of arms because not many of them are publicly available. To the best of our knowledge, there is no dataset. Therefore, we artificially extend our dataset using Neural Style Transfer technique and simple image transformations. We describe our dataset and the division into training and test sets that respects the lack of data examples. We discuss results obtained with both small convolutional neural network (convnet) trained from scratch and modified architectures of various convents pretrained on Imagenet dataset. This paper further focuses on the VGG architecture which produces the best accuracy. We show accuracy progress during training, per-class accuracy and a normalized confusion matrix for VGG16 architecture. We reach top-1 accuracy of nearly 60% and top-5 accuracy of 80%. To the best of our knowledge, this is the first family coats of arms classification work, so we cannot compare our results with others.
Název v anglickém jazyce
Family Coat of Arms and Armorial Achievement Classification
Popis výsledku anglicky
This paper presents an approach to classification of family coats of arms and armorial achievement. It is difficult to obtain images with coats of arms because not many of them are publicly available. To the best of our knowledge, there is no dataset. Therefore, we artificially extend our dataset using Neural Style Transfer technique and simple image transformations. We describe our dataset and the division into training and test sets that respects the lack of data examples. We discuss results obtained with both small convolutional neural network (convnet) trained from scratch and modified architectures of various convents pretrained on Imagenet dataset. This paper further focuses on the VGG architecture which produces the best accuracy. We show accuracy progress during training, per-class accuracy and a normalized confusion matrix for VGG16 architecture. We reach top-1 accuracy of nearly 60% and top-5 accuracy of 80%. To the best of our knowledge, this is the first family coats of arms classification work, so we cannot compare our results with others.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Systems Design and Applications
ISBN
—
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
9
Strana od-do
577-586
Název nakladatele
Springer International Publishing
Místo vydání
Los Alamitos
Místo konání akce
Vellore
Datum konání akce
6. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—