Cartesian Genetic Programming as an Optimizer of Programs Evolved with Geometric Semantic Genetic Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132058" target="_blank" >RIV/00216305:26230/19:PU132058 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11859/" target="_blank" >https://www.fit.vut.cz/research/publication/11859/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-16670-0_7" target="_blank" >10.1007/978-3-030-16670-0_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cartesian Genetic Programming as an Optimizer of Programs Evolved with Geometric Semantic Genetic Programming
Popis výsledku v původním jazyce
In Geometric Semantic Genetic Programming (GSGP), genetic operators directly work at the level of semantics rather than syntax. It provides many advantages, including much higher quality of resulting individuals (in terms of error) in comparison with a common genetic programming. However, GSGP produces extremely huge solutions that could be difficult to apply in systems with limited resources such as embedded systems. We propose Subtree Cartesian Genetic Programming (SCGP) -- a method capable of reducing the number of nodes in the trees generated by GSGP. SCGP executes a common Cartesian Genetic Programming (CGP) on all elementary subtrees created by GSGP and on various compositions of these optimized subtrees in order to create one compact representation of the original program. SCGP does not guarantee the (exact) semantic equivalence between the CGP individuals and the GSGP subtrees, but the user can define conditions when a particular CGP individual is acceptable. We evaluated SCGP on four common symbolic regression benchmark problems and the obtained node reduction is from 92.4% to 99.9%.
Název v anglickém jazyce
Cartesian Genetic Programming as an Optimizer of Programs Evolved with Geometric Semantic Genetic Programming
Popis výsledku anglicky
In Geometric Semantic Genetic Programming (GSGP), genetic operators directly work at the level of semantics rather than syntax. It provides many advantages, including much higher quality of resulting individuals (in terms of error) in comparison with a common genetic programming. However, GSGP produces extremely huge solutions that could be difficult to apply in systems with limited resources such as embedded systems. We propose Subtree Cartesian Genetic Programming (SCGP) -- a method capable of reducing the number of nodes in the trees generated by GSGP. SCGP executes a common Cartesian Genetic Programming (CGP) on all elementary subtrees created by GSGP and on various compositions of these optimized subtrees in order to create one compact representation of the original program. SCGP does not guarantee the (exact) semantic equivalence between the CGP individuals and the GSGP subtrees, but the user can define conditions when a particular CGP individual is acceptable. We evaluated SCGP on four common symbolic regression benchmark problems and the obtained node reduction is from 92.4% to 99.9%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18053" target="_blank" >LTC18053: Pokročilé metody Nature-Inspired optimalizačních algoritmů a HPC implementace pro řešení reálných aplikací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Genetic Programming 22nd European Conference, EuroGP 2019
ISBN
978-3-030-16669-4
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
98-113
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Leipzig
Datum konání akce
24. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—