End-to-end DNN based text-independent speaker recognition for long and short utterances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132988" target="_blank" >RIV/00216305:26230/19:PU132988 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0885230818303632" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0885230818303632</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csl.2019.06.002" target="_blank" >10.1016/j.csl.2019.06.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
End-to-end DNN based text-independent speaker recognition for long and short utterances
Popis výsledku v původním jazyce
Recently several end-to-end speaker verification systems based on deep neural networks (DNNs) have been proposed. These systems have been proven to be competitive for text-dependent tasks as well as for text-independent tasks with short utterances. However, for text-independent tasks with longer utterances, end-to-end systems are still outperformed by standard i-vector + PLDA systems. In this work, we present an end-to-end speaker verification system that is initialized to mimic an i-vector + PLDA baseline. The system is then further trained in an end-to-end manner but regularized so that it does not deviate too far from the initial system. In this way we mitigate overfitting which normally limits the performance of end-to-end systems. The proposed system outperforms the i-vector + PLDA baseline on both long and short duration utterances.
Název v anglickém jazyce
End-to-end DNN based text-independent speaker recognition for long and short utterances
Popis výsledku anglicky
Recently several end-to-end speaker verification systems based on deep neural networks (DNNs) have been proposed. These systems have been proven to be competitive for text-dependent tasks as well as for text-independent tasks with short utterances. However, for text-independent tasks with longer utterances, end-to-end systems are still outperformed by standard i-vector + PLDA systems. In this work, we present an end-to-end speaker verification system that is initialized to mimic an i-vector + PLDA baseline. The system is then further trained in an end-to-end manner but regularized so that it does not deviate too far from the initial system. In this way we mitigate overfitting which normally limits the performance of end-to-end systems. The proposed system outperforms the i-vector + PLDA baseline on both long and short duration utterances.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER SPEECH AND LANGUAGE
ISSN
0885-2308
e-ISSN
1095-8363
Svazek periodika
2020
Číslo periodika v rámci svazku
59
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
22-35
Kód UT WoS článku
000490540900002
EID výsledku v databázi Scopus
2-s2.0-85067618095