Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134144" target="_blank" >RIV/00216305:26230/19:PU134144 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11206/" target="_blank" >https://www.fit.vut.cz/research/publication/11206/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/evco_a_00229" target="_blank" >10.1162/evco_a_00229</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming
Popis výsledku v původním jazyce
In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time consuming process as the predictor size depends on a given application and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.
Název v anglickém jazyce
Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming
Popis výsledku anglicky
In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time consuming process as the predictor size depends on a given application and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EVOLUTIONARY COMPUTATION
ISSN
1063-6560
e-ISSN
1530-9304
Svazek periodika
27
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
497-523
Kód UT WoS článku
000483650900005
EID výsledku v databázi Scopus
2-s2.0-85071745594