Analysis of Multilingual Sequence-to-Sequence Speech Recognition Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134178" target="_blank" >RIV/00216305:26230/19:PU134178 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2355.pdf" target="_blank" >https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2355.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2019-2355" target="_blank" >10.21437/Interspeech.2019-2355</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Multilingual Sequence-to-Sequence Speech Recognition Systems
Popis výsledku v původním jazyce
This paper investigates the applications of various multilingual approaches developed in conventional deep neural network - hidden Markov model (DNN-HMM) systems to sequence-tosequence (seq2seq) automatic speech recognition (ASR). We employ a joint connectionist temporal classification-attention network as our base model. Our main contribution is separated into two parts. First, we investigate the effectiveness of the seq2seq model with stacked multilingual bottle-neck features obtained from a conventional DNN-HMM system on the Babel multilingual speech corpus. Second, we investigate the effectiveness of transfer learning from a pre-trained multilingual seq2seq model with and without the target language included in the original multilingual training data. In this experiment, we also explore various architectures and training strategies of the multilingual seq2seq model by making use of knowledge obtained in the DNN-HMM based transfer-learning. Although both approaches significantly improved the performance from a monolingual seq2seq baseline, interestingly, we found the multilingual bottle-neck features to be superior to multilingual models with transfer learning. This finding suggests that we can efficiently combine the benefits of the DNN-HMM system with the seq2seq system through multilingual bottle-neck feature techniques.
Název v anglickém jazyce
Analysis of Multilingual Sequence-to-Sequence Speech Recognition Systems
Popis výsledku anglicky
This paper investigates the applications of various multilingual approaches developed in conventional deep neural network - hidden Markov model (DNN-HMM) systems to sequence-tosequence (seq2seq) automatic speech recognition (ASR). We employ a joint connectionist temporal classification-attention network as our base model. Our main contribution is separated into two parts. First, we investigate the effectiveness of the seq2seq model with stacked multilingual bottle-neck features obtained from a conventional DNN-HMM system on the Babel multilingual speech corpus. Second, we investigate the effectiveness of transfer learning from a pre-trained multilingual seq2seq model with and without the target language included in the original multilingual training data. In this experiment, we also explore various architectures and training strategies of the multilingual seq2seq model by making use of knowledge obtained in the DNN-HMM based transfer-learning. Although both approaches significantly improved the performance from a monolingual seq2seq baseline, interestingly, we found the multilingual bottle-neck features to be superior to multilingual models with transfer learning. This finding suggests that we can efficiently combine the benefits of the DNN-HMM system with the seq2seq system through multilingual bottle-neck feature techniques.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Interspeech
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2220-2224
Název nakladatele
International Speech Communication Association
Místo vydání
Graz
Místo konání akce
INTERSPEECH 2019
Datum konání akce
15. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—