Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cascaded Stripe Memory Engines for Multi-Scale Object Detection in FPGA

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134943" target="_blank" >RIV/00216305:26230/19:PU134943 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8573854" target="_blank" >https://ieeexplore.ieee.org/document/8573854</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TCSVT.2018.2886476" target="_blank" >10.1109/TCSVT.2018.2886476</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cascaded Stripe Memory Engines for Multi-Scale Object Detection in FPGA

  • Popis výsledku v původním jazyce

    Object detection in embedded systems is important for many contemporary applications that involve vision and scene analysis. In this paper, we propose a novel architecture for object detection implemented in FPGA, based on the Stripe Memory Engine (SME), and point out shortcomings of existing architectures. SME processes a stream of image data so that it stores a narrow stripe of the input image and its scaled versions and uses a detector unit which is efficiently pipelined across multiple image positions within the SME. We show how to process images with up to 4K resolution at high framerates using cascades of SMEs. As a detector algorithm, the SMEs use boosted soft cascade with simple image features that require only pixel comparisons and look-up tables; therefore, they are well suitable for hardware implemenation. We describe the components of our architecture and compare it to several published works in several configurations. As an example, we implemented face detection and license plate detection applications that work with HD images (1280×720 pixels) running at over 60 frames per second on Xilinx Zynq platform. We analyzed their power consumption, evaluated the accuracy of our detectors, and compared them to Haar Cascades from OpenCV that are often used by other authors. We show that our detectors offer better accuracy as well as performance at lower power consumption.

  • Název v anglickém jazyce

    Cascaded Stripe Memory Engines for Multi-Scale Object Detection in FPGA

  • Popis výsledku anglicky

    Object detection in embedded systems is important for many contemporary applications that involve vision and scene analysis. In this paper, we propose a novel architecture for object detection implemented in FPGA, based on the Stripe Memory Engine (SME), and point out shortcomings of existing architectures. SME processes a stream of image data so that it stores a narrow stripe of the input image and its scaled versions and uses a detector unit which is efficiently pipelined across multiple image positions within the SME. We show how to process images with up to 4K resolution at high framerates using cascades of SMEs. As a detector algorithm, the SMEs use boosted soft cascade with simple image features that require only pixel comparisons and look-up tables; therefore, they are well suitable for hardware implemenation. We describe the components of our architecture and compare it to several published works in several configurations. As an example, we implemented face detection and license plate detection applications that work with HD images (1280×720 pixels) running at over 60 frames per second on Xilinx Zynq platform. We analyzed their power consumption, evaluated the accuracy of our detectors, and compared them to Haar Cascades from OpenCV that are often used by other authors. We show that our detectors offer better accuracy as well as performance at lower power consumption.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

  • ISSN

    1051-8215

  • e-ISSN

    1558-2205

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    267-280

  • Kód UT WoS článku

    000521641800022

  • EID výsledku v databázi Scopus

    2-s2.0-85058662945