Optimizing Bayesian Hmm Based X-Vector Clustering for the Second Dihard Speech Diarization Challenge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU136482" target="_blank" >RIV/00216305:26230/20:PU136482 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9053982" target="_blank" >https://ieeexplore.ieee.org/document/9053982</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP40776.2020.9053982" target="_blank" >10.1109/ICASSP40776.2020.9053982</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimizing Bayesian Hmm Based X-Vector Clustering for the Second Dihard Speech Diarization Challenge
Popis výsledku v původním jazyce
This paper presents an analysis of our diarization system winning the second DIHARD speech diarization challenge, track 1. This system is based on clustering x-vector speaker embeddings extracted every 0.25s from short segments of the input recording. In this paper, we focus on the two x-vector clustering methods employed, namely Agglomerative Hierarchical Clustering followed by a clustering based on Bayesian Hidden Markov Model (BHMM). Even though the system submitted to the challenge had further post-processing steps, we will show that using this BHMM solely is enough to achieve the best performance in the challenge. The analysis will show improvements achieved by optimizing individual processing steps, including a simple procedure to effectively perform "domain adaptation" by Probabilistic Linear Discriminant Analysis model interpolation. All experiments are performed in the DIHARD II evaluation framework.
Název v anglickém jazyce
Optimizing Bayesian Hmm Based X-Vector Clustering for the Second Dihard Speech Diarization Challenge
Popis výsledku anglicky
This paper presents an analysis of our diarization system winning the second DIHARD speech diarization challenge, track 1. This system is based on clustering x-vector speaker embeddings extracted every 0.25s from short segments of the input recording. In this paper, we focus on the two x-vector clustering methods employed, namely Agglomerative Hierarchical Clustering followed by a clustering based on Bayesian Hidden Markov Model (BHMM). Even though the system submitted to the challenge had further post-processing steps, we will show that using this BHMM solely is enough to achieve the best performance in the challenge. The analysis will show improvements achieved by optimizing individual processing steps, including a simple procedure to effectively perform "domain adaptation" by Probabilistic Linear Discriminant Analysis model interpolation. All experiments are performed in the DIHARD II evaluation framework.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-1-5090-6631-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
6519-6523
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Barcelona
Místo konání akce
Barcelona
Datum konání akce
4. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000615970406156