Probabilistic embeddings for speaker diarization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU136530" target="_blank" >RIV/00216305:26230/20:PU136530 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/Odyssey_2020/abstracts/75.html" target="_blank" >https://www.isca-speech.org/archive/Odyssey_2020/abstracts/75.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Odyssey.2020-4" target="_blank" >10.21437/Odyssey.2020-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probabilistic embeddings for speaker diarization
Popis výsledku v původním jazyce
Speaker embeddings (x-vectors) extracted from very short segments of speech have recently been shown to give competitive performance in speaker diarization. We generalize this recipe by extracting from each speech segment, in parallel with the x-vector, also a diagonal precision matrix, thus providing a path for the propagation of information about the quality of the speech segment into a PLDA scoring backend. These precisions quantify the uncertainty about what the values of the embeddings might have been if they had been extracted from high quality speech segments. The proposed probabilistic embeddings (x-vectors with precisions) are interfaced with the PLDA model by treating the x-vectors as hidden variables and marginalizing them out. We apply the proposed probabilistic embeddings as input to an agglomerative hierarchical clustering (AHC) algorithm to do diarization in the DIHARD19 evaluation set. We compute the full PLDA likelihood by the book for each clustering hypothesis that is considered by AHC. We do joint discriminative training of the PLDA parameters and of the probabilistic x-vector extractor. We demonstrate accuracy gains relative to a baseline AHC algorithm, applied to traditional xvectors (without uncertainty), and which uses averaging of binary log-likelihood-ratios, rather than by-the-book scoring.
Název v anglickém jazyce
Probabilistic embeddings for speaker diarization
Popis výsledku anglicky
Speaker embeddings (x-vectors) extracted from very short segments of speech have recently been shown to give competitive performance in speaker diarization. We generalize this recipe by extracting from each speech segment, in parallel with the x-vector, also a diagonal precision matrix, thus providing a path for the propagation of information about the quality of the speech segment into a PLDA scoring backend. These precisions quantify the uncertainty about what the values of the embeddings might have been if they had been extracted from high quality speech segments. The proposed probabilistic embeddings (x-vectors with precisions) are interfaced with the PLDA model by treating the x-vectors as hidden variables and marginalizing them out. We apply the proposed probabilistic embeddings as input to an agglomerative hierarchical clustering (AHC) algorithm to do diarization in the DIHARD19 evaluation set. We compute the full PLDA likelihood by the book for each clustering hypothesis that is considered by AHC. We do joint discriminative training of the PLDA parameters and of the probabilistic x-vector extractor. We demonstrate accuracy gains relative to a baseline AHC algorithm, applied to traditional xvectors (without uncertainty), and which uses averaging of binary log-likelihood-ratios, rather than by-the-book scoring.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Odyssey 2020 The Speaker and Language Recognition Workshop
ISBN
—
ISSN
2312-2846
e-ISSN
—
Počet stran výsledku
8
Strana od-do
24-31
Název nakladatele
International Speech Communication Association
Místo vydání
Tokyo
Místo konání akce
Tokyo
Datum konání akce
1. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—