Evolution of Cellular Automata with Conditionally Matching Rules for Image Filtering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138610" target="_blank" >RIV/00216305:26230/20:PU138610 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9185767" target="_blank" >https://ieeexplore.ieee.org/document/9185767</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC48606.2020.9185767" target="_blank" >10.1109/CEC48606.2020.9185767</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolution of Cellular Automata with Conditionally Matching Rules for Image Filtering
Popis výsledku v původním jazyce
We present an evolutionary method for the design of image filters using two-dimensional uniform cellular automata. Specifically, a technique called Conditionally Matching Rules is applied to represent transition functions for cellular automata working with 256 cell states. This approach allows reducing the length of chromosomes for the evolution substantially which was a need for such high number of states since the traditional table based encoding would require enormous memory space. The problem of removing Salt-and-Pepper noise from 8-bit grayscale images is considered as a case study. A cellular automaton will be initialised by the values of pixels of a corrupted image and a variant of Evolution Strategy will be applied for the design of a suitable transition function that is able to eliminate the noise from the image during ordinary development of the cellular automaton. We show that using only 5-cell neighbourhood of the cellular automaton in combination with conditionally matching rules the resulting filters are able to provide a very good output quality and are comparable with several existing solutions that require more resources. Moreover, the proposed evolutionary method exhibits a high performance which allows us to design filters in very short time even on a common PC.
Název v anglickém jazyce
Evolution of Cellular Automata with Conditionally Matching Rules for Image Filtering
Popis výsledku anglicky
We present an evolutionary method for the design of image filters using two-dimensional uniform cellular automata. Specifically, a technique called Conditionally Matching Rules is applied to represent transition functions for cellular automata working with 256 cell states. This approach allows reducing the length of chromosomes for the evolution substantially which was a need for such high number of states since the traditional table based encoding would require enormous memory space. The problem of removing Salt-and-Pepper noise from 8-bit grayscale images is considered as a case study. A cellular automaton will be initialised by the values of pixels of a corrupted image and a variant of Evolution Strategy will be applied for the design of a suitable transition function that is able to eliminate the noise from the image during ordinary development of the cellular automaton. We show that using only 5-cell neighbourhood of the cellular automaton in combination with conditionally matching rules the resulting filters are able to provide a very good output quality and are comparable with several existing solutions that require more resources. Moreover, the proposed evolutionary method exhibits a high performance which allows us to design filters in very short time even on a common PC.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE Congress on Evolutionary Computation (CEC)
ISBN
978-1-7281-6929-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE Computational Intelligence Society
Místo vydání
Los Alamitos
Místo konání akce
Glasgow
Datum konání akce
19. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000703998202026