Grading Quality of Color Retinal Images to Assist Fundus Camera Operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138615" target="_blank" >RIV/00216305:26230/20:PU138615 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12202/" target="_blank" >https://www.fit.vut.cz/research/publication/12202/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CBMS49503.2020.00022" target="_blank" >10.1109/CBMS49503.2020.00022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Grading Quality of Color Retinal Images to Assist Fundus Camera Operators
Popis výsledku v původním jazyce
Suitable image quality is a prerequisite to ensure accurate diagnosis or person recognition by color retinal images. Many factors during image acquisition, transferring and storing can result in poor quality retinal images. Poor quality images not only increase the possibility of wrong diagnosis, false acceptance, or incorrect identification but also increase diagnosis or recognition time. Therefore, retinal image quality assessment has become an important research topic. In general, only one color channel (most of the time either green or grayscale) is used to assess the quality of retinal images ignoring the quality of other channels. However, all image channels carry complementary information. In this paper, we propose a quality assessment approach for a colored retinal image to assist a fundus camera operator to judge the image quality. In our approach, we analyze the histogram of pixel intensity and uniformity of illumination, as well as check the presence of two main anatomical structures, optic disc, and central retinal blood vessels, in all color channels (i.e., red, green and blue) as well as in grayscale format.We show the effectiveness of our approach by grading 3090 color retinal images of five publicly available retinal databases.
Název v anglickém jazyce
Grading Quality of Color Retinal Images to Assist Fundus Camera Operators
Popis výsledku anglicky
Suitable image quality is a prerequisite to ensure accurate diagnosis or person recognition by color retinal images. Many factors during image acquisition, transferring and storing can result in poor quality retinal images. Poor quality images not only increase the possibility of wrong diagnosis, false acceptance, or incorrect identification but also increase diagnosis or recognition time. Therefore, retinal image quality assessment has become an important research topic. In general, only one color channel (most of the time either green or grayscale) is used to assess the quality of retinal images ignoring the quality of other channels. However, all image channels carry complementary information. In this paper, we propose a quality assessment approach for a colored retinal image to assist a fundus camera operator to judge the image quality. In our approach, we analyze the histogram of pixel intensity and uniformity of illumination, as well as check the presence of two main anatomical structures, optic disc, and central retinal blood vessels, in all color channels (i.e., red, green and blue) as well as in grayscale format.We show the effectiveness of our approach by grading 3090 color retinal images of five publicly available retinal databases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)
ISBN
978-1-7281-9429-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
77-82
Název nakladatele
IEEE Computer Society Press
Místo vydání
Rochester
Místo konání akce
Rochester
Datum konání akce
28. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000786468800015