PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects on Plane
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138876" target="_blank" >RIV/00216305:26230/20:PU138876 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.dicta2020.org/wp-content/uploads/2020/09/58_CameraReady.pdf" target="_blank" >http://www.dicta2020.org/wp-content/uploads/2020/09/58_CameraReady.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DICTA51227.2020.9363417" target="_blank" >10.1109/DICTA51227.2020.9363417</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects on Plane
Popis výsledku v původním jazyce
In this work, we propose a novel method for automatic camera calibration, mainly for surveillance cameras. The calibration consists in observing objects on the ground plane of the scene; in our experiments, vehicles were used. However, any arbitrary rigid objects can be used instead, as verified by experiments with synthetic data. The calibration process uses convolutional neural network localisation of landmarks on the observed objects in the scene and the corresponding 3D positions of the localised landmarks - thus fine-grained classification of the detected vehicles in the image plane is done. The observation of the objects (detection, classification and landmark detection) enables to determine all typically used camera calibration parameters (focal length, rotation matrix, and translation vector). The experiments with real data show slightly better results in comparison with state-of-the-art work, however with an extreme speed-up. The calibration error decreased from 3.01 % to 2.72 % and 1223 × faster computation was achieved.
Název v anglickém jazyce
PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects on Plane
Popis výsledku anglicky
In this work, we propose a novel method for automatic camera calibration, mainly for surveillance cameras. The calibration consists in observing objects on the ground plane of the scene; in our experiments, vehicles were used. However, any arbitrary rigid objects can be used instead, as verified by experiments with synthetic data. The calibration process uses convolutional neural network localisation of landmarks on the observed objects in the scene and the corresponding 3D positions of the localised landmarks - thus fine-grained classification of the detected vehicles in the image plane is done. The observation of the objects (detection, classification and landmark detection) enables to determine all typically used camera calibration parameters (focal length, rotation matrix, and translation vector). The experiments with real data show slightly better results in comparison with state-of-the-art work, however with an extreme speed-up. The calibration error decreased from 3.01 % to 2.72 % and 1223 × faster computation was achieved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 International Conference on Digital Image Computing: Techniques and Applications (DICTA)
ISBN
978-1-7281-9108-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Melbourne
Místo konání akce
Melbourne
Datum konání akce
30. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—