Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning Probabilistic Automata in the Context of IEC 104

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU139060" target="_blank" >RIV/00216305:26230/20:PU139060 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12355/" target="_blank" >https://www.fit.vut.cz/research/publication/12355/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning Probabilistic Automata in the Context of IEC 104

  • Popis výsledku v původním jazyce

    Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational  communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we

  • Název v anglickém jazyce

    Learning Probabilistic Automata in the Context of IEC 104

  • Popis výsledku anglicky

    Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational  communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VI20192022138" target="_blank" >VI20192022138: Bezpečnostní monitorování řídicí komunikace ICS v energetických sítích (BONNET)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů