ICTree: Automatic Perceptual Metrics for Tree Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU139209" target="_blank" >RIV/00216305:26230/21:PU139209 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/21:00355963
Výsledek na webu
<a href="https://doi.org/10.1145/3478513.3480519" target="_blank" >https://doi.org/10.1145/3478513.3480519</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3478513.3480519" target="_blank" >10.1145/3478513.3480519</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ICTree: Automatic Perceptual Metrics for Tree Models
Popis výsledku v původním jazyce
Many algorithms for synthetic tree generation exist, but the visual quality of the generated models is unknown. This problem is usually solved by performing limited user studies or by side-by-side comparison. We introduce an automated system for quality assessment of the tree model based on their perception. We conducted a user study in which over one million pairs of images were compared to collect subjective perceptual scores of generated trees. The perceptual score was used to train two neural-network-based predictors. A view independent ICTreeF uses the tree models geometric features that are easy to extract from any model. The second is ICTreeI that estimates the perceived visual quality of a tree from its image. Moreover, to provide an insight into the problem, we deduce intrinsic attributes and evaluate which features make trees look like real trees. In particular, we show that branching angles, length of branches, and widths are critical for perceived realism.
Název v anglickém jazyce
ICTree: Automatic Perceptual Metrics for Tree Models
Popis výsledku anglicky
Many algorithms for synthetic tree generation exist, but the visual quality of the generated models is unknown. This problem is usually solved by performing limited user studies or by side-by-side comparison. We introduce an automated system for quality assessment of the tree model based on their perception. We conducted a user study in which over one million pairs of images were compared to collect subjective perceptual scores of generated trees. The perceptual score was used to train two neural-network-based predictors. A view independent ICTreeF uses the tree models geometric features that are easy to extract from any model. The second is ICTreeI that estimates the perceived visual quality of a tree from its image. Moreover, to provide an insight into the problem, we deduce intrinsic attributes and evaluate which features make trees look like real trees. In particular, we show that branching angles, length of branches, and widths are critical for perceived realism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM TRANSACTIONS ON GRAPHICS
ISSN
0730-0301
e-ISSN
1557-7368
Svazek periodika
40
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000729846700035
EID výsledku v databázi Scopus
—