Adaptive formal approximations of Markov chains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU140793" target="_blank" >RIV/00216305:26230/21:PU140793 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0166531621000249" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166531621000249</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.peva.2021.102207" target="_blank" >10.1016/j.peva.2021.102207</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive formal approximations of Markov chains
Popis výsledku v původním jazyce
We explore formal approximation techniques for Markov chains based on state-space reduction that aim at improving the scalability of the analysis, while providing formal bounds on the approximation error. We first present a comprehensive survey of existing state-reduction techniques based on clustering or truncation. Then, we extend existing frameworks for aggregation-based analysis of Markov chains by allowing them to handle chains with an arbitrary structure of the underlying state space - including continuous-time models - and improve upon existing bounds on the approximation error. Finally, we introduce a new hybrid scheme that utilises both aggregation and truncation of the state space and provides the best available approach for approximating continuous-time models. We conclude with a broad and detailed comparative evaluation of existing and new approximation techniques and investigate how different methods handle various Markov models. The results also show that the introduced hybrid scheme significantly outperforms existing approaches and provides a speedup of the analysis up to a factor of 30 with the corresponding approximation error bounded within 0.1%.
Název v anglickém jazyce
Adaptive formal approximations of Markov chains
Popis výsledku anglicky
We explore formal approximation techniques for Markov chains based on state-space reduction that aim at improving the scalability of the analysis, while providing formal bounds on the approximation error. We first present a comprehensive survey of existing state-reduction techniques based on clustering or truncation. Then, we extend existing frameworks for aggregation-based analysis of Markov chains by allowing them to handle chains with an arbitrary structure of the underlying state space - including continuous-time models - and improve upon existing bounds on the approximation error. Finally, we introduce a new hybrid scheme that utilises both aggregation and truncation of the state space and provides the best available approach for approximating continuous-time models. We conclude with a broad and detailed comparative evaluation of existing and new approximation techniques and investigate how different methods handle various Markov models. The results also show that the introduced hybrid scheme significantly outperforms existing approaches and provides a speedup of the analysis up to a factor of 30 with the corresponding approximation error bounded within 0.1%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PERFORMANCE EVALUATION
ISSN
0166-5316
e-ISSN
1872-745X
Svazek periodika
148
Číslo periodika v rámci svazku
102207
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000648542900002
EID výsledku v databázi Scopus
2-s2.0-85105204964