Eat: Enhanced ASR-TTS for Self-Supervised Speech Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142916" target="_blank" >RIV/00216305:26230/21:PU142916 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9413375" target="_blank" >https://ieeexplore.ieee.org/document/9413375</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP39728.2021.9413375" target="_blank" >10.1109/ICASSP39728.2021.9413375</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Eat: Enhanced ASR-TTS for Self-Supervised Speech Recognition
Popis výsledku v původním jazyce
Self-supervised ASR-TTS models suffer in out-of-domain data conditions. Here we propose an enhanced ASR-TTS (EAT) model that incorporates two main features: 1) The ASR!TTS direction is equipped with a language model reward to penalize the ASR hypotheses before forwarding it to TTS. 2) In the TTS!ASR direction, a hyper-parameter is introduced to scale the attention context from synthesized speech before sending it to ASR to handle out-ofdomain data. Training strategies and the effectiveness of the EAT model are explored under out-of-domain data conditions. The results show that EAT reduces the performance gap between supervised and self-supervised training significantly by absolute 2.6% and 2.7% on Librispeech and BABEL respectively.
Název v anglickém jazyce
Eat: Enhanced ASR-TTS for Self-Supervised Speech Recognition
Popis výsledku anglicky
Self-supervised ASR-TTS models suffer in out-of-domain data conditions. Here we propose an enhanced ASR-TTS (EAT) model that incorporates two main features: 1) The ASR!TTS direction is equipped with a language model reward to penalize the ASR hypotheses before forwarding it to TTS. 2) In the TTS!ASR direction, a hyper-parameter is introduced to scale the attention context from synthesized speech before sending it to ASR to handle out-ofdomain data. Training strategies and the effectiveness of the EAT model are explored under out-of-domain data conditions. The results show that EAT reduces the performance gap between supervised and self-supervised training significantly by absolute 2.6% and 2.7% on Librispeech and BABEL respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISBN
978-1-7281-7605-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
6753-6757
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Toronto, Ontario
Místo konání akce
Toronto, Canada
Datum konání akce
6. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000704288407006