Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Text Augmentation for Language Models in High Error Recognition Scenario

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142964" target="_blank" >RIV/00216305:26230/21:PU142964 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.isca-speech.org/archive/interspeech_2021/benes21_interspeech.html" target="_blank" >https://www.isca-speech.org/archive/interspeech_2021/benes21_interspeech.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/Interspeech.2021-627" target="_blank" >10.21437/Interspeech.2021-627</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Text Augmentation for Language Models in High Error Recognition Scenario

  • Popis výsledku v původním jazyce

    In this paper, we explore several data augmentation strategies for training of language models for speech recognition. We compare augmentation based on global error statistics with one based on unigram statistics of ASR errors and with labelsmoothing and its sampled variant. Additionally, we investigate the stability and the predictive power of perplexity estimated on augmented data. Despite being trivial, augmentation driven by global substitution, deletion and insertion rates achieves the best rescoring results. On the other hand, even though the associated perplexity measure is stable, it gives no better prediction of the final error rate than the vanilla one. Our best augmentation scheme increases the WER improvement from second-pass rescoring from 1.1% to 1.9% absolute on the CHiMe-6 challenge.

  • Název v anglickém jazyce

    Text Augmentation for Language Models in High Error Recognition Scenario

  • Popis výsledku anglicky

    In this paper, we explore several data augmentation strategies for training of language models for speech recognition. We compare augmentation based on global error statistics with one based on unigram statistics of ASR errors and with labelsmoothing and its sampled variant. Additionally, we investigate the stability and the predictive power of perplexity estimated on augmented data. Despite being trivial, augmentation driven by global substitution, deletion and insertion rates achieves the best rescoring results. On the other hand, even though the associated perplexity measure is stable, it gives no better prediction of the final error rate than the vanilla one. Our best augmentation scheme increases the WER improvement from second-pass rescoring from 1.1% to 1.9% absolute on the CHiMe-6 challenge.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1872-1876

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    30. 8. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000841879501198