Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142972" target="_blank" >RIV/00216305:26230/21:PU142972 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/21:00119867
Výsledek na webu
<a href="https://www.mdpi.com/2227-9067/8/10/934" target="_blank" >https://www.mdpi.com/2227-9067/8/10/934</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/children8100934" target="_blank" >10.3390/children8100934</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR
Popis výsledku v původním jazyce
A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.
Název v anglickém jazyce
Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR
Popis výsledku anglicky
A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30209 - Paediatrics
Návaznosti výsledku
Projekt
<a href="/cs/project/TL01000394" target="_blank" >TL01000394: Počítačová podpora pro analýzu a predikci růstu a vývoje dítěte</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Children-Basel
ISSN
2227-9067
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
934-955
Kód UT WoS článku
000716165700001
EID výsledku v databázi Scopus
2-s2.0-85117604063