Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142972" target="_blank" >RIV/00216305:26230/21:PU142972 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/21:00119867

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-9067/8/10/934" target="_blank" >https://www.mdpi.com/2227-9067/8/10/934</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/children8100934" target="_blank" >10.3390/children8100934</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR

  • Popis výsledku v původním jazyce

    A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.

  • Název v anglickém jazyce

    Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR

  • Popis výsledku anglicky

    A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30209 - Paediatrics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TL01000394" target="_blank" >TL01000394: Počítačová podpora pro analýzu a predikci růstu a vývoje dítěte</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Children-Basel

  • ISSN

    2227-9067

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

    934-955

  • Kód UT WoS článku

    000716165700001

  • EID výsledku v databázi Scopus

    2-s2.0-85117604063