Plankton Recognition in Images with Varying Size
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU150368" target="_blank" >RIV/00216305:26230/21:PU150368 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-68780-9_11" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-68780-9_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-68780-9_11" target="_blank" >10.1007/978-3-030-68780-9_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Plankton Recognition in Images with Varying Size
Popis výsledku v původním jazyce
Monitoring plankton is important as they are an essential part of the aquatic food web as well as producers of oxygen. Modern imaging devices produce a massive amount of plankton image data which calls for automatic solutions. These images are characterized by a very large variation in both the size and the aspect ratio. Convolutional neural network (CNN) based classification methods, on the other hand, typically require a fixed size input. Simple scaling of the images into a common size contains several drawbacks. First, the information about the size of the plankton is lost. For human experts, the size information is one of the most important cues for identifying the species. Second, downscaling the images leads to the loss of fine details such as flagella essential for species recognition. Third, upscaling the images increases the size of the network. In this work, extensive experiments on various approaches to address the varying image dimensions are carried out on a challenging phytoplankton image dataset. A novel combination of methods is proposed, showing improvement over the baseline CNN.
Název v anglickém jazyce
Plankton Recognition in Images with Varying Size
Popis výsledku anglicky
Monitoring plankton is important as they are an essential part of the aquatic food web as well as producers of oxygen. Modern imaging devices produce a massive amount of plankton image data which calls for automatic solutions. These images are characterized by a very large variation in both the size and the aspect ratio. Convolutional neural network (CNN) based classification methods, on the other hand, typically require a fixed size input. Simple scaling of the images into a common size contains several drawbacks. First, the information about the size of the plankton is lost. For human experts, the size information is one of the most important cues for identifying the species. Second, downscaling the images leads to the loss of fine details such as flagella essential for species recognition. Third, upscaling the images increases the size of the network. In this work, extensive experiments on various approaches to address the varying image dimensions are carried out on a challenging phytoplankton image dataset. A novel combination of methods is proposed, showing improvement over the baseline CNN.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Svazek periodika
12666
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
110-120
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85103240017