The dawn of a text-dependent society: deepfakes as a threat to speech verification systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU142956" target="_blank" >RIV/00216305:26230/22:PU142956 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3477314.3507013" target="_blank" >https://dl.acm.org/doi/10.1145/3477314.3507013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3477314.3507013" target="_blank" >10.1145/3477314.3507013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The dawn of a text-dependent society: deepfakes as a threat to speech verification systems
Popis výsledku v původním jazyce
We are already aware that deepfakes pose threats to humankind. Nowadays, mostly as fake news or disinformation; however, there are still unexplored areas such as using deepfakes to spoof voice verification. We present a real-world use case for spoofing voice authentication in a customer care call center. Based on this scenario, we evaluate the feasibility of attacking such a system and create an attacker profile. For this purpose, we examine three available speech synthesis tools and discuss their usability. We use these tools and acquired knowledge to generate a dataset including deepfake speech and assess the resilience of voice biometrics systems against deepfakes. We prove that voice biometrics systems are indeed vulnerable to deepfake powered attacks. The most significant outcome is the proposal of text-dependent verification as a novel countermeasure for presented attacks. Text-dependent verification provides higher security than text-independent verification and can be used today as the simplest protection method against deepfakes.
Název v anglickém jazyce
The dawn of a text-dependent society: deepfakes as a threat to speech verification systems
Popis výsledku anglicky
We are already aware that deepfakes pose threats to humankind. Nowadays, mostly as fake news or disinformation; however, there are still unexplored areas such as using deepfakes to spoof voice verification. We present a real-world use case for spoofing voice authentication in a customer care call center. Based on this scenario, we evaluate the feasibility of attacking such a system and create an attacker profile. For this purpose, we examine three available speech synthesis tools and discuss their usability. We use these tools and acquired knowledge to generate a dataset including deepfake speech and assess the resilience of voice biometrics systems against deepfakes. We prove that voice biometrics systems are indeed vulnerable to deepfake powered attacks. The most significant outcome is the proposal of text-dependent verification as a novel countermeasure for presented attacks. Text-dependent verification provides higher security than text-independent verification and can be used today as the simplest protection method against deepfakes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing
ISBN
978-1-4503-8713-2
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1646-1655
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, NY
Místo konání akce
Brno
Datum konání akce
25. 4. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—