Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and analysis on standard tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU142975" target="_blank" >RIV/00216305:26230/22:PU142975 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0885230821000619" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0885230821000619</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csl.2021.101254" target="_blank" >10.1016/j.csl.2021.101254</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and analysis on standard tasks
Popis výsledku v původním jazyce
The recently proposed VBx diarization method uses a Bayesian hidden Markov model to find speaker clusters in a sequence of x-vectors. In this work we perform an extensive comparison of performance of the VBx diarization with other approaches in the literature and we show that VBx achieves superior performance on three of the most popular datasets for evaluating diarization: CALLHOME, AMI and DIHARD II datasets. Further, we present for the first time the derivation and update formulae for the VBx model, focusing on the efficiency and simplicity of this model as compared to the previous and more complex BHMM model working on frame-by-frame standard Cepstral features. Together with this publication, we release the recipe for training the x-vector extractors used in our experiments on both wide and narrowband data, and the VBx recipes that attain state-of-the-art performance on all three datasets. Besides, we point out the lack of a standardized evaluation protocol for AMI dataset and we propose a new protocol for both Beamformed and Mix-Headset audios based on the official AMI partitions and transcriptions.
Název v anglickém jazyce
Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and analysis on standard tasks
Popis výsledku anglicky
The recently proposed VBx diarization method uses a Bayesian hidden Markov model to find speaker clusters in a sequence of x-vectors. In this work we perform an extensive comparison of performance of the VBx diarization with other approaches in the literature and we show that VBx achieves superior performance on three of the most popular datasets for evaluating diarization: CALLHOME, AMI and DIHARD II datasets. Further, we present for the first time the derivation and update formulae for the VBx model, focusing on the efficiency and simplicity of this model as compared to the previous and more complex BHMM model working on frame-by-frame standard Cepstral features. Together with this publication, we release the recipe for training the x-vector extractors used in our experiments on both wide and narrowband data, and the VBx recipes that attain state-of-the-art performance on all three datasets. Besides, we point out the lack of a standardized evaluation protocol for AMI dataset and we propose a new protocol for both Beamformed and Mix-Headset audios based on the official AMI partitions and transcriptions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER SPEECH AND LANGUAGE
ISSN
0885-2308
e-ISSN
1095-8363
Svazek periodika
71
Číslo periodika v rámci svazku
101254
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000761599000019
EID výsledku v databázi Scopus
2-s2.0-85109214006