CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU143327" target="_blank" >RIV/00216305:26230/22:PU143327 - isvavai.cz</a>
Výsledek na webu
<a href="https://openaccess.thecvf.com/content/WACV2022/html/Tomesek_CrossLocate_Cross-Modal_Large-Scale_Visual_Geo-Localization_in_Natural_Environments_Using_Rendered_WACV_2022_paper.html" target="_blank" >https://openaccess.thecvf.com/content/WACV2022/html/Tomesek_CrossLocate_Cross-Modal_Large-Scale_Visual_Geo-Localization_in_Natural_Environments_Using_Rendered_WACV_2022_paper.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV51458.2022.00225" target="_blank" >10.1109/WACV51458.2022.00225</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities
Popis výsledku v původním jazyce
We propose a novel approach to visual geo-localization in natural environments. This is a challenging problem due to vast localization areas, the variable appearance of outdoor environments and the scarcity of available data. In order to make the research of new approaches possible, we first create two databases containing "synthetic" images of various modalities. These image modalities are rendered from a 3D terrain model and include semantic segmentations, silhouette maps and depth maps. By combining the rendered database views with existing datasets of photographs (used as "queries" to be localized), we create a unique benchmark for visual geo-localization in natural environments, which contains correspondences between query photographs and rendered database imagery. The distinct ability to match photographs to synthetically rendered databases defines our task as "cross-modal". On top of this benchmark, we provide thorough ablation studies analysing the localization potential of the database image modalities. We reveal the depth information as the best choice for outdoor localization. Finally, based on our observations, we carefully develop a fully-automatic method for large-scale cross-modal localization using image retrieval. We demonstrate its localization performance outdoors in the entire state of Switzerland. Our method reveals a large gap between operating within a single image domain (e.g. photographs) and working across domains (e.g. photographs matched to rendered images), as gained knowledge is not transferable between the two. Moreover, we show that modern localization methods fail when applied to such a cross-modal task and that our method achieves significantly better results than state-of-the-art approaches. The datasets, code and trained models are available on the project website: http://cphoto.fit.vutbr.cz/crosslocate/.
Název v anglickém jazyce
CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities
Popis výsledku anglicky
We propose a novel approach to visual geo-localization in natural environments. This is a challenging problem due to vast localization areas, the variable appearance of outdoor environments and the scarcity of available data. In order to make the research of new approaches possible, we first create two databases containing "synthetic" images of various modalities. These image modalities are rendered from a 3D terrain model and include semantic segmentations, silhouette maps and depth maps. By combining the rendered database views with existing datasets of photographs (used as "queries" to be localized), we create a unique benchmark for visual geo-localization in natural environments, which contains correspondences between query photographs and rendered database imagery. The distinct ability to match photographs to synthetically rendered databases defines our task as "cross-modal". On top of this benchmark, we provide thorough ablation studies analysing the localization potential of the database image modalities. We reveal the depth information as the best choice for outdoor localization. Finally, based on our observations, we carefully develop a fully-automatic method for large-scale cross-modal localization using image retrieval. We demonstrate its localization performance outdoors in the entire state of Switzerland. Our method reveals a large gap between operating within a single image domain (e.g. photographs) and working across domains (e.g. photographs matched to rendered images), as gained knowledge is not transferable between the two. Moreover, we show that modern localization methods fail when applied to such a cross-modal task and that our method achieves significantly better results than state-of-the-art approaches. The datasets, code and trained models are available on the project website: http://cphoto.fit.vutbr.cz/crosslocate/.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIZ19004" target="_blank" >LTAIZ19004: Topografická analýza obrazu s využitím metod hlubokého učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-1-6654-0477-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
3174-3183
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Waikoloa
Místo konání akce
Waikoloa, Hawaii
Datum konání akce
4. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—