Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU143327" target="_blank" >RIV/00216305:26230/22:PU143327 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://openaccess.thecvf.com/content/WACV2022/html/Tomesek_CrossLocate_Cross-Modal_Large-Scale_Visual_Geo-Localization_in_Natural_Environments_Using_Rendered_WACV_2022_paper.html" target="_blank" >https://openaccess.thecvf.com/content/WACV2022/html/Tomesek_CrossLocate_Cross-Modal_Large-Scale_Visual_Geo-Localization_in_Natural_Environments_Using_Rendered_WACV_2022_paper.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV51458.2022.00225" target="_blank" >10.1109/WACV51458.2022.00225</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities

  • Popis výsledku v původním jazyce

    We propose a novel approach to visual geo-localization in natural environments. This is a challenging problem due to vast localization areas, the variable appearance of outdoor environments and the scarcity of available data. In order to make the research of new approaches possible, we first create two databases containing "synthetic" images of various modalities. These image modalities are rendered from a 3D terrain model and include semantic segmentations, silhouette maps and depth maps. By combining the rendered database views with existing datasets of photographs (used as "queries" to be localized), we create a unique benchmark for visual geo-localization in natural environments, which contains correspondences between query photographs and rendered database imagery. The distinct ability to match photographs to synthetically rendered databases defines our task as "cross-modal". On top of this benchmark, we provide thorough ablation studies analysing the localization potential of the database image modalities. We reveal the depth information as the best choice for outdoor localization. Finally, based on our observations, we carefully develop a fully-automatic method for large-scale cross-modal localization using image retrieval. We demonstrate its localization performance outdoors in the entire state of Switzerland. Our method reveals a large gap between operating within a single image domain (e.g. photographs) and working across domains (e.g. photographs matched to rendered images), as gained knowledge is not transferable between the two. Moreover, we show that modern localization methods fail when applied to such a cross-modal task and that our method achieves significantly better results than state-of-the-art approaches. The datasets, code and trained models are available on the project website: http://cphoto.fit.vutbr.cz/crosslocate/.

  • Název v anglickém jazyce

    CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments using Rendered Modalities

  • Popis výsledku anglicky

    We propose a novel approach to visual geo-localization in natural environments. This is a challenging problem due to vast localization areas, the variable appearance of outdoor environments and the scarcity of available data. In order to make the research of new approaches possible, we first create two databases containing "synthetic" images of various modalities. These image modalities are rendered from a 3D terrain model and include semantic segmentations, silhouette maps and depth maps. By combining the rendered database views with existing datasets of photographs (used as "queries" to be localized), we create a unique benchmark for visual geo-localization in natural environments, which contains correspondences between query photographs and rendered database imagery. The distinct ability to match photographs to synthetically rendered databases defines our task as "cross-modal". On top of this benchmark, we provide thorough ablation studies analysing the localization potential of the database image modalities. We reveal the depth information as the best choice for outdoor localization. Finally, based on our observations, we carefully develop a fully-automatic method for large-scale cross-modal localization using image retrieval. We demonstrate its localization performance outdoors in the entire state of Switzerland. Our method reveals a large gap between operating within a single image domain (e.g. photographs) and working across domains (e.g. photographs matched to rendered images), as gained knowledge is not transferable between the two. Moreover, we show that modern localization methods fail when applied to such a cross-modal task and that our method achieves significantly better results than state-of-the-art approaches. The datasets, code and trained models are available on the project website: http://cphoto.fit.vutbr.cz/crosslocate/.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIZ19004" target="_blank" >LTAIZ19004: Topografická analýza obrazu s využitím metod hlubokého učení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)

  • ISBN

    978-1-6654-0477-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    3174-3183

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    Waikoloa

  • Místo konání akce

    Waikoloa, Hawaii

  • Datum konání akce

    4. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku