GPU-Accelerated Synthesis of Probabilistic Programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144844" target="_blank" >RIV/00216305:26230/22:PU144844 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPU-Accelerated Synthesis of Probabilistic Programs
Popis výsledku v původním jazyce
We consider automated synthesis methods for finite-state probabilistic programs satisfying a given temporal specification. Our goal is to accelerate the synthesis process using massively parallel graphical processing units (GPUs). The involved analysis of families of candidate programs is the main computational bottleneck of the process. We thus propose a state-level GPU-parallelisation of the model-checking algorithms for Markov chains and Markov decision processes that leverages the related but distinct topology of the candidate programs. For structurally complex families, we achieve a speedup of the analysis over one order of magnitude. This already leads to a considerable acceleration of the overall synthesis process and paves the way for further improvements.
Název v anglickém jazyce
GPU-Accelerated Synthesis of Probabilistic Programs
Popis výsledku anglicky
We consider automated synthesis methods for finite-state probabilistic programs satisfying a given temporal specification. Our goal is to accelerate the synthesis process using massively parallel graphical processing units (GPUs). The involved analysis of families of candidate programs is the main computational bottleneck of the process. We thus propose a state-level GPU-parallelisation of the model-checking algorithms for Markov chains and Markov decision processes that leverages the related but distinct topology of the candidate programs. For structurally complex families, we achieve a speedup of the analysis over one order of magnitude. This already leads to a considerable acceleration of the overall synthesis process and paves the way for further improvements.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Computer Aided Systems Theory (EUROCAST'22)
ISBN
978-3-031-25312-6
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
256-266
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Las Palmas de Gran Canaria, Canary Islands
Datum konání akce
20. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—