Source Separation for Sound Event Detection in domestic environments using jointly trained models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146145" target="_blank" >RIV/00216305:26230/22:PU146145 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9914755" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9914755</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IWAENC53105.2022.9914755" target="_blank" >10.1109/IWAENC53105.2022.9914755</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Source Separation for Sound Event Detection in domestic environments using jointly trained models
Popis výsledku v původním jazyce
Sound Event Detection and Source Separation are closely related tasks: whereas the first aims to find the time boundaries of acoustic events inside a recording, the goal of the latter is to isolate each of the acoustic sources into different signals. This paper presents a Sound Event Detection system formed by two independently pretrained blocks for Source Separation and Sound Event Detection. We propose a joint-training scheme, where both blocks are trained at the same time, and a two-stage training, where each block trains while the other one is frozen. In addition, we compare the use of supervised and unsupervised pre-training for the Separation block, and two model selection strategies for Sound Event Detection. Our experiments show that the proposed methods are able to outperform the baseline systems of the DCASE 2021 Challenge Task 4.
Název v anglickém jazyce
Source Separation for Sound Event Detection in domestic environments using jointly trained models
Popis výsledku anglicky
Sound Event Detection and Source Separation are closely related tasks: whereas the first aims to find the time boundaries of acoustic events inside a recording, the goal of the latter is to isolate each of the acoustic sources into different signals. This paper presents a Sound Event Detection system formed by two independently pretrained blocks for Source Separation and Sound Event Detection. We propose a joint-training scheme, where both blocks are trained at the same time, and a two-stage training, where each block trains while the other one is frozen. In addition, we compare the use of supervised and unsupervised pre-training for the Separation block, and two model selection strategies for Sound Event Detection. Our experiments show that the proposed methods are able to outperform the baseline systems of the DCASE 2021 Challenge Task 4.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19087" target="_blank" >LTAIN19087: Multi-lingualita v řečových technologiích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of The 17th International Workshop on Acoustic Signal Enhancement (IWAENC 2022)
ISBN
978-1-6654-6867-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Bamberg
Místo konání akce
Bamberg
Datum konání akce
5. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—