Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning based diagnosis of alcohol use disorder (AUD) using EEG

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU146724" target="_blank" >RIV/00216305:26230/22:PU146724 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9937134" target="_blank" >https://ieeexplore.ieee.org/document/9937134</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCE-Berlin56473.2022.9937134" target="_blank" >10.1109/ICCE-Berlin56473.2022.9937134</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning based diagnosis of alcohol use disorder (AUD) using EEG

  • Popis výsledku v původním jazyce

    Alcohol use disorder (AUD) involves people who have difficulty controlling their drinking habits. This results in significant distress and also affects functioning normally in their daily life. The challenge in screening AUD patients using subjective measures is the dependency of this method on self-assessment, which is unreliable in the case of alcoholics as they may lie or not correctly remember facts because access to alcohol use can affect memory. The solution is to use neuroimaging modalities such as electroencephalography (EEG), which looks into the brain patterns and does not involve self-rating. This study proposes a deep learning (DL) method to classify alcoholics and healthy controls. The proposed deep learning method applies EEG feature extraction automatically and classifies the participants into relevant groups. The participants included 30 AUD patients (mean age 56.70 15.33 years) and 15 healthy controls (mean 42.67 15.90 years) who were recruited to acquire EEG data. The data were recorded during 10 minutes of eyes closed (EC) and eyes open (EO) conditions. The proposed analysis utilizes 1D CNN to fit and evaluate the classification model. From EEG data, features were extracted and classified using a convolutional neural network (CNN). The results show that the CNN has achieved the performance rendering a classification accuracy of (93%), specificity (89 % ), and sensitivity (89 % ) with an f1 score of 0.94 for the AUD group. In addition, for the healthy control group, the specificity of (100%), the sensitivity of (100%), and the f1 score of 0.91 are achieved. In conclusion, the results implicated significant neurophysiological differences between alcoholics and control.

  • Název v anglickém jazyce

    Deep learning based diagnosis of alcohol use disorder (AUD) using EEG

  • Popis výsledku anglicky

    Alcohol use disorder (AUD) involves people who have difficulty controlling their drinking habits. This results in significant distress and also affects functioning normally in their daily life. The challenge in screening AUD patients using subjective measures is the dependency of this method on self-assessment, which is unreliable in the case of alcoholics as they may lie or not correctly remember facts because access to alcohol use can affect memory. The solution is to use neuroimaging modalities such as electroencephalography (EEG), which looks into the brain patterns and does not involve self-rating. This study proposes a deep learning (DL) method to classify alcoholics and healthy controls. The proposed deep learning method applies EEG feature extraction automatically and classifies the participants into relevant groups. The participants included 30 AUD patients (mean age 56.70 15.33 years) and 15 healthy controls (mean 42.67 15.90 years) who were recruited to acquire EEG data. The data were recorded during 10 minutes of eyes closed (EC) and eyes open (EO) conditions. The proposed analysis utilizes 1D CNN to fit and evaluate the classification model. From EEG data, features were extracted and classified using a convolutional neural network (CNN). The results show that the CNN has achieved the performance rendering a classification accuracy of (93%), specificity (89 % ), and sensitivity (89 % ) with an f1 score of 0.94 for the AUD group. In addition, for the healthy control group, the specificity of (100%), the sensitivity of (100%), and the f1 score of 0.91 are achieved. In conclusion, the results implicated significant neurophysiological differences between alcoholics and control.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    {2022 IEEE 12th International Conference on Consumer Electronics (ICCE-Berlin)

  • ISBN

    978-1-6654-5676-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    Berlin

  • Místo konání akce

    Berlin, Germany

  • Datum konání akce

    2. 9. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku