AI-driven intent-based networking for 5G enhanced robot autonomy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU147263" target="_blank" >RIV/00216305:26230/22:PU147263 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-08341-9_6" target="_blank" >http://dx.doi.org/10.1007/978-3-031-08341-9_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08341-9_6" target="_blank" >10.1007/978-3-031-08341-9_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AI-driven intent-based networking for 5G enhanced robot autonomy
Popis výsledku v původním jazyce
Innovative 5G orchestration architectures so far, have been mainly designed and optimized for Quality of Service (QoS), but are not aware of Quality of Experience (QoE). This makes intent recognition and End-to-End interpretability an inherited problem for orchestration systems, leading to possible creation of ineffective control policies. In this paper, an intent-based networking for autonomous robots is being proposed and demonstrated through the 5G-ERA project. In particular, to map an intent from individual vertical action to a global OSM control policy, a workflow of four tools is proposed: i) Action Sequence Generation, ii) Network Intent Estimation, iii) Resource Usage Forecasting, and iv) OSM Control Policy Generation. All of these tools are described in the paper with specific function descriptions, inputs, outputs and the semantic models/Machine Learning tools that have been used. Finally, the paper presents the developed intent-based dashboard for the visualization of the tools outputs, whilst taking QoE into consideration.
Název v anglickém jazyce
AI-driven intent-based networking for 5G enhanced robot autonomy
Popis výsledku anglicky
Innovative 5G orchestration architectures so far, have been mainly designed and optimized for Quality of Service (QoS), but are not aware of Quality of Experience (QoE). This makes intent recognition and End-to-End interpretability an inherited problem for orchestration systems, leading to possible creation of ineffective control policies. In this paper, an intent-based networking for autonomous robots is being proposed and demonstrated through the 5G-ERA project. In particular, to map an intent from individual vertical action to a global OSM control policy, a workflow of four tools is proposed: i) Action Sequence Generation, ii) Network Intent Estimation, iii) Resource Usage Forecasting, and iv) OSM Control Policy Generation. All of these tools are described in the paper with specific function descriptions, inputs, outputs and the semantic models/Machine Learning tools that have been used. Finally, the paper presents the developed intent-based dashboard for the visualization of the tools outputs, whilst taking QoE into consideration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIAI 2022 IFIP WG 12.5 International Workshops
ISBN
—
ISSN
1868-4238
e-ISSN
1868-422X
Počet stran výsledku
10
Strana od-do
61-70
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Kréta
Datum konání akce
17. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—