Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149092" target="_blank" >RIV/00216305:26230/23:PU149092 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S221478292300057X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S221478292300057X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.invent.2023.100657" target="_blank" >10.1016/j.invent.2023.100657</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation
Popis výsledku v původním jazyce
Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment (EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. However, defining robust models is challenging due to the data's noisy and frequently missing observations. This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, we addressed the missing observation problem by utilising hidden Markov models and the possibility of including information from unlabelled samples via transfer learning. We validated our approach using two wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety severity accurately based on GAD-7 scores.
Název v anglickém jazyce
Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation
Popis výsledku anglicky
Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment (EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. However, defining robust models is challenging due to the data's noisy and frequently missing observations. This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, we addressed the missing observation problem by utilising hidden Markov models and the possibility of including information from unlabelled samples via transfer learning. We validated our approach using two wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety severity accurately based on GAD-7 scores.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Internet Interventions
ISSN
2214-7829
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
100657
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85166982926