Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149092" target="_blank" >RIV/00216305:26230/23:PU149092 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S221478292300057X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S221478292300057X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.invent.2023.100657" target="_blank" >10.1016/j.invent.2023.100657</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation

  • Popis výsledku v původním jazyce

    Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment (EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. However, defining robust models is challenging due to the data's noisy and frequently missing observations. This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, we addressed the missing observation problem by utilising hidden Markov models and the possibility of including information from unlabelled samples via transfer learning. We validated our approach using two wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety severity accurately based on GAD-7 scores.

  • Název v anglickém jazyce

    Automatic Patient Functionality Assessment from Multimodal Data using Deep Learning Techniques - Development and Feasibility Evaluation

  • Popis výsledku anglicky

    Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment (EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. However, defining robust models is challenging due to the data's noisy and frequently missing observations. This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, we addressed the missing observation problem by utilising hidden Markov models and the possibility of including information from unlabelled samples via transfer learning. We validated our approach using two wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety severity accurately based on GAD-7 scores.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Internet Interventions

  • ISSN

    2214-7829

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    100657

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85166982926