Vision UFormer: Long-Range Monocular Absolute Depth Estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149297" target="_blank" >RIV/00216305:26230/23:PU149297 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0097849323000262" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0097849323000262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cag.2023.02.003" target="_blank" >10.1016/j.cag.2023.02.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vision UFormer: Long-Range Monocular Absolute Depth Estimation
Popis výsledku v původním jazyce
We introduce Vision UFormer (ViUT), a novel deep neural long-range monocular depth estimator. The input is an RGB image, and the output is an image that stores the absolute distance of the object in the scene as its per-pixel values. ViUT consists of a Transformer encoder and a ResNet decoder combined with UNet style of skip connections. It is trained on 1M images across ten datasets in a staged regime that starts with easier-to-predict data such as indoor photographs and continues to more complex long-range outdoor scenes. We show that ViUT provides comparable results for normalized relative distances and short-range classical datasets such as NYUv2 and KITTI. We further show that it successfully estimates of absolute long-range depth in meters. We validate ViUT on a wide variety of long-range scenes showing its high estimation capabilities with a relative improvement of up to 23%. Absolute depth estimation finds application in many areas, and we show its usability in image composition, range annotation, defocus, and scene reconstruction.
Název v anglickém jazyce
Vision UFormer: Long-Range Monocular Absolute Depth Estimation
Popis výsledku anglicky
We introduce Vision UFormer (ViUT), a novel deep neural long-range monocular depth estimator. The input is an RGB image, and the output is an image that stores the absolute distance of the object in the scene as its per-pixel values. ViUT consists of a Transformer encoder and a ResNet decoder combined with UNet style of skip connections. It is trained on 1M images across ten datasets in a staged regime that starts with easier-to-predict data such as indoor photographs and continues to more complex long-range outdoor scenes. We show that ViUT provides comparable results for normalized relative distances and short-range classical datasets such as NYUv2 and KITTI. We further show that it successfully estimates of absolute long-range depth in meters. We validate ViUT on a wide variety of long-range scenes showing its high estimation capabilities with a relative improvement of up to 23%. Absolute depth estimation finds application in many areas, and we show its usability in image composition, range annotation, defocus, and scene reconstruction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIZ19004" target="_blank" >LTAIZ19004: Topografická analýza obrazu s využitím metod hlubokého učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & GRAPHICS-UK
ISSN
0097-8493
e-ISSN
1873-7684
Svazek periodika
111
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
180-189
Kód UT WoS článku
000954860700001
EID výsledku v databázi Scopus
2-s2.0-85149382691