Speech-Based Emotion Recognition with Self-Supervised Models Using Attentive Channel-Wise Correlations and Label Smoothing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149428" target="_blank" >RIV/00216305:26230/23:PU149428 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10094673" target="_blank" >https://ieeexplore.ieee.org/document/10094673</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP49357.2023.10094673" target="_blank" >10.1109/ICASSP49357.2023.10094673</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speech-Based Emotion Recognition with Self-Supervised Models Using Attentive Channel-Wise Correlations and Label Smoothing
Popis výsledku v původním jazyce
When recognizing emotions from speech, we encounter two common problems: how to optimally capture emotion- relevant information from the speech signal and how to best quantify or categorize the noisy subjective emotion labels. Self-supervised pre-trained representations can robustly capture information from speech enabling state-of-the-art results in many downstream tasks including emotion recognition. However, better ways of aggregating the information across time need to be considered as the relevant emotion information is likely to appear piecewise and not uniformly across the signal. For the labels, we need to take into account that there is a substantial degree of noise that comes from the subjective human annotations. In this paper, we propose a novel approach to attentive pooling based on correlations between the representations' coefficients combined with label smoothing, a method aiming to reduce the confidence of the classifier on the training labels. We evaluate our proposed approach on the benchmark dataset IEMOCAP, and demonstrate high performance surpassing that in the literature. The code to reproduce the results is available at github.com/skakouros/s3prl_attentive_correlation.
Název v anglickém jazyce
Speech-Based Emotion Recognition with Self-Supervised Models Using Attentive Channel-Wise Correlations and Label Smoothing
Popis výsledku anglicky
When recognizing emotions from speech, we encounter two common problems: how to optimally capture emotion- relevant information from the speech signal and how to best quantify or categorize the noisy subjective emotion labels. Self-supervised pre-trained representations can robustly capture information from speech enabling state-of-the-art results in many downstream tasks including emotion recognition. However, better ways of aggregating the information across time need to be considered as the relevant emotion information is likely to appear piecewise and not uniformly across the signal. For the labels, we need to take into account that there is a substantial degree of noise that comes from the subjective human annotations. In this paper, we propose a novel approach to attentive pooling based on correlations between the representations' coefficients combined with label smoothing, a method aiming to reduce the confidence of the classifier on the training labels. We evaluate our proposed approach on the benchmark dataset IEMOCAP, and demonstrate high performance surpassing that in the literature. The code to reproduce the results is available at github.com/skakouros/s3prl_attentive_correlation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICASSP 2023
ISBN
978-1-7281-6327-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Rhodes Island
Místo konání akce
Rhodes Island, Greece
Datum konání akce
4. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—