Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Target Speech Extraction: An overview

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149430" target="_blank" >RIV/00216305:26230/23:PU149430 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10113382" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10113382</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MSP.2023.3240008" target="_blank" >10.1109/MSP.2023.3240008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Target Speech Extraction: An overview

  • Popis výsledku v původním jazyce

    Humans can listen to a target speaker even in challenging acoustic conditions that have noise, reverberation, and interfering speakers. This phenomenon is known as the cocktail party effect . For decades, researchers have focused on approaching the listening ability of humans. One critical issue is handling interfering speakers because the target and nontarget speech signals share similar characteristics, complicating their discrimination. Target speech/speaker extraction (TSE) isolates the speech signal of a target speaker from a mixture of several speakers, with or without noises and reverberations, using clues that identify the speaker in the mixture. Such clues might be a spatial clue indicating the direction of the target speaker, a video of the speaker's lips, and a prerecorded enrollment utterance from which the speaker's voice characteristics can be derived. TSE is an emerging field of research that has received increased attention in recent years because it offers a practical approach to the cocktail party problem and involves such aspects of signal processing as audio, visual, and array processing as well as deep learning. This article focuses on recent neural-based approaches and presents an in-depth overview of TSE. We guide readers through the different major approaches, emphasizing the similarities among frameworks and discussing potential future directions.

  • Název v anglickém jazyce

    Neural Target Speech Extraction: An overview

  • Popis výsledku anglicky

    Humans can listen to a target speaker even in challenging acoustic conditions that have noise, reverberation, and interfering speakers. This phenomenon is known as the cocktail party effect . For decades, researchers have focused on approaching the listening ability of humans. One critical issue is handling interfering speakers because the target and nontarget speech signals share similar characteristics, complicating their discrimination. Target speech/speaker extraction (TSE) isolates the speech signal of a target speaker from a mixture of several speakers, with or without noises and reverberations, using clues that identify the speaker in the mixture. Such clues might be a spatial clue indicating the direction of the target speaker, a video of the speaker's lips, and a prerecorded enrollment utterance from which the speaker's voice characteristics can be derived. TSE is an emerging field of research that has received increased attention in recent years because it offers a practical approach to the cocktail party problem and involves such aspects of signal processing as audio, visual, and array processing as well as deep learning. This article focuses on recent neural-based approaches and presents an in-depth overview of TSE. We guide readers through the different major approaches, emphasizing the similarities among frameworks and discussing potential future directions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19087" target="_blank" >LTAIN19087: Multi-lingualita v řečových technologiích</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE SIGNAL PROCESSING MAGAZINE

  • ISSN

    1053-5888

  • e-ISSN

    1558-0792

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    8-29

  • Kód UT WoS článku

    000981974000003

  • EID výsledku v databázi Scopus

    2-s2.0-85159861514