ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150188" target="_blank" >RIV/00216305:26230/23:PU150188 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.emnlp-main.117/" target="_blank" >https://aclanthology.org/2023.emnlp-main.117/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
Popis výsledku v původním jazyce
The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.
Název v anglickém jazyce
ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
Popis výsledku anglicky
The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů