Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150188" target="_blank" >RIV/00216305:26230/23:PU150188 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2023.emnlp-main.117/" target="_blank" >https://aclanthology.org/2023.emnlp-main.117/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness

  • Popis výsledku v původním jazyce

    The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.

  • Název v anglickém jazyce

    ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness

  • Popis výsledku anglicky

    The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů