Node-weighted Graph Convolutional Network for Depression Detection in Transcribed Clinical Interviews
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150720" target="_blank" >RIV/00216305:26230/23:PU150720 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-archive.org/interspeech_2023/burdisso23_interspeech.pdf" target="_blank" >https://www.isca-archive.org/interspeech_2023/burdisso23_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2023-1923" target="_blank" >10.21437/Interspeech.2023-1923</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Node-weighted Graph Convolutional Network for Depression Detection in Transcribed Clinical Interviews
Popis výsledku v původním jazyce
We propose a simple approach for weighting self- connecting edges in a Graph Convolutional Network (GCN) and show its impact on depression detection from transcribed clinical interviews. To this end, we use a GCN for model- ing non-consecutive and long-distance semantics to classify the transcriptions into depressed or control subjects. The proposed method aims to mitigate the limiting assumptions of locality and the equal importance of self-connections vs. edges to neighbor- ing nodes in GCNs, while preserving attractive features such as low computational cost, data agnostic, and interpretability capa- bilities. We perform an exhaustive evaluation in two benchmark datasets. Results show that our approach consistently outper- forms the vanilla GCN model as well as previously reported re- sults, achieving an F1=0.84% on both datasets. Finally, a qual- itative analysis illustrates the interpretability capabilities of the proposed approach and its alignment with previous findings in psychology.
Název v anglickém jazyce
Node-weighted Graph Convolutional Network for Depression Detection in Transcribed Clinical Interviews
Popis výsledku anglicky
We propose a simple approach for weighting self- connecting edges in a Graph Convolutional Network (GCN) and show its impact on depression detection from transcribed clinical interviews. To this end, we use a GCN for model- ing non-consecutive and long-distance semantics to classify the transcriptions into depressed or control subjects. The proposed method aims to mitigate the limiting assumptions of locality and the equal importance of self-connections vs. edges to neighbor- ing nodes in GCNs, while preserving attractive features such as low computational cost, data agnostic, and interpretability capa- bilities. We perform an exhaustive evaluation in two benchmark datasets. Results show that our approach consistently outper- forms the vanilla GCN model as well as previously reported re- sults, achieving an F1=0.84% on both datasets. Finally, a qual- itative analysis illustrates the interpretability capabilities of the proposed approach and its alignment with previous findings in psychology.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
3617-3621
Název nakladatele
International Speech Communication Association
Místo vydání
Dublin
Místo konání akce
Dublin
Datum konání akce
20. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—