HyperConformer: Multi-head HyperMixer for Efficient Speech Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150721" target="_blank" >RIV/00216305:26230/23:PU150721 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-archive.org/interspeech_2023/mai23_interspeech.pdf" target="_blank" >https://www.isca-archive.org/interspeech_2023/mai23_interspeech.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2023-1611" target="_blank" >10.21437/Interspeech.2023-1611</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HyperConformer: Multi-head HyperMixer for Efficient Speech Recognition
Popis výsledku v původním jazyce
State-of-the-art ASR systems have achieved promising results by modeling local and global interactions separately. While the former can be computed efficiently, global interactions are usu- ally modeled via attention mechanisms, which are expensive for long input sequences. Here, we address this by extending Hy- perMixer, an efficient alternative to attention exhibiting linear complexity, to the Conformer architecture for speech recogni- tion, leading to HyperConformer. In particular, multi-head Hy- perConformer achieves comparable or higher recognition per- formance while being more efficient than Conformer in terms of inference speed, memory, parameter count, and available train- ing data. HyperConformer achieves a word error rate of 2.9% on LibriSpeech test-clean with less than 8M neural parameters and a peak memory during training of 5.7GB, hence trainable with accessible hardware. Encoder speed is between 38% on mid-length speech and 56% on long speech faster than an equiv- alent Conformer.1)
Název v anglickém jazyce
HyperConformer: Multi-head HyperMixer for Efficient Speech Recognition
Popis výsledku anglicky
State-of-the-art ASR systems have achieved promising results by modeling local and global interactions separately. While the former can be computed efficiently, global interactions are usu- ally modeled via attention mechanisms, which are expensive for long input sequences. Here, we address this by extending Hy- perMixer, an efficient alternative to attention exhibiting linear complexity, to the Conformer architecture for speech recogni- tion, leading to HyperConformer. In particular, multi-head Hy- perConformer achieves comparable or higher recognition per- formance while being more efficient than Conformer in terms of inference speed, memory, parameter count, and available train- ing data. HyperConformer achieves a word error rate of 2.9% on LibriSpeech test-clean with less than 8M neural parameters and a peak memory during training of 5.7GB, hence trainable with accessible hardware. Encoder speed is between 38% on mid-length speech and 56% on long speech faster than an equiv- alent Conformer.1)
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
1990-9772
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2213-2217
Název nakladatele
International Speech Communication Association
Místo vydání
Dublin
Místo konání akce
Dublin
Datum konání akce
20. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—