Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150722" target="_blank" >RIV/00216305:26230/23:PU150722 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095168" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095168</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP49357.2023.10095168" target="_blank" >10.1109/ICASSP49357.2023.10095168</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks
Popis výsledku v původním jazyce
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manuallygenerated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs, namely word-consensus-networks, allows the SLU system to improve in comparison to the 1-best setup (5.5% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, a relative improvement of 17.8% over the 1-best configuration, being a recommended alternative to overcome the limitations of working with automatically generated transcripts.
Název v anglickém jazyce
Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks
Popis výsledku anglicky
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manuallygenerated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs, namely word-consensus-networks, allows the SLU system to improve in comparison to the 1-best setup (5.5% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, a relative improvement of 17.8% over the 1-best configuration, being a recommended alternative to overcome the limitations of working with automatically generated transcripts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-1-7281-6327-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Rhodes Island
Místo konání akce
Rhodes Island, Greece
Datum konání akce
4. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—