Automatic Speech Analysis Framework for ATC Communication in HAAWAII
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU150844" target="_blank" >RIV/00216305:26230/23:PU150844 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sesarju.eu/sites/default/files/documents/sid/2023/Papers/SIDs_2023_paper_72%20final.pdf" target="_blank" >https://www.sesarju.eu/sites/default/files/documents/sid/2023/Papers/SIDs_2023_paper_72%20final.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Speech Analysis Framework for ATC Communication in HAAWAII
Popis výsledku v původním jazyce
Over the past years, several SESAR funded ex- ploratory projects focused on bringing speech and language technologies to the Air Traffic Management (ATM) domain and demonstrating their added value through successful applications. Recently ended HAAWAII project developed a generic archi- tecture and framework, which was validated through several tasks such as callsign highlighting, pre-filling radar labels, and readback error detection. The primary goal was to support pilot and air traffic controller communication by deploying Automatic Speech Recognition (ASR) engines. Contextual information (if available) extracted from surveillance data, flight plan data, or previous communication can be exploited via entity boosting to further improve the recognition performance. HAAWAII proposed various design attributes to integrate the ASR engine into the ATM framework, often depending on concrete technical specifics of target air navigation service providers (ANSPs). This paper gives a brief overview and provides an objective assessment of speech processing components developed and integrated into the HAAWAII framework. Specifically, the following tasks are evaluated w.r.t. application domain: (i) speech activity detection, (ii) speaker segmentation and speaker role classification, as well as (iii) ASR. To our best knowledge, HAAWAII framework offers the best performing speech technologies for ATM, reaching high recognition accuracy (i.e., error-correction done by exploiting additional contextual data), robustness (i.e., models developed using large training corpora) and support for rapid domain transfer (i.e., to new ATM sector with minimum investment). Two scenarios provided by ANSPs were used for testing, achieving callsign detection accuracy of about 96% and 95% for NATS and ISAVIA, respectively.
Název v anglickém jazyce
Automatic Speech Analysis Framework for ATC Communication in HAAWAII
Popis výsledku anglicky
Over the past years, several SESAR funded ex- ploratory projects focused on bringing speech and language technologies to the Air Traffic Management (ATM) domain and demonstrating their added value through successful applications. Recently ended HAAWAII project developed a generic archi- tecture and framework, which was validated through several tasks such as callsign highlighting, pre-filling radar labels, and readback error detection. The primary goal was to support pilot and air traffic controller communication by deploying Automatic Speech Recognition (ASR) engines. Contextual information (if available) extracted from surveillance data, flight plan data, or previous communication can be exploited via entity boosting to further improve the recognition performance. HAAWAII proposed various design attributes to integrate the ASR engine into the ATM framework, often depending on concrete technical specifics of target air navigation service providers (ANSPs). This paper gives a brief overview and provides an objective assessment of speech processing components developed and integrated into the HAAWAII framework. Specifically, the following tasks are evaluated w.r.t. application domain: (i) speech activity detection, (ii) speaker segmentation and speaker role classification, as well as (iii) ASR. To our best knowledge, HAAWAII framework offers the best performing speech technologies for ATM, reaching high recognition accuracy (i.e., error-correction done by exploiting additional contextual data), robustness (i.e., models developed using large training corpora) and support for rapid domain transfer (i.e., to new ATM sector with minimum investment). Two scenarios provided by ANSPs were used for testing, achieving callsign detection accuracy of about 96% and 95% for NATS and ISAVIA, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SESAR Innovation Days
ISBN
—
ISSN
0770-1268
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
SESAR Joint Undertaking
Místo vydání
Seville
Místo konání akce
Seville
Datum konání akce
27. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—