Semantic Mutation Operator for Fast and Efficient Design of Bent Boolean Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU149919" target="_blank" >RIV/00216305:26230/24:PU149919 - isvavai.cz</a>
Výsledek na webu
<a href="https://rdcu.be/ds8Zc" target="_blank" >https://rdcu.be/ds8Zc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10710-023-09476-w" target="_blank" >10.1007/s10710-023-09476-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semantic Mutation Operator for Fast and Efficient Design of Bent Boolean Functions
Popis výsledku v původním jazyce
Boolean functions are important cryptographic primitives with extensive use in symmetric cryptography. These functions need to possess various properties, such as nonlinearity to be useful. The main limiting factor of the quality of a Boolean function is the number of its input variables, which has to be sufficiently large. The contemporary design methods either scale poorly or are able to create only a small subset of all functions with the desired properties. This necessitates the development of new and more efficient ways of Boolean function design. In this paper, we propose a new semantic mutation operator for the design of bent Boolean functions via genetic programming. The principle of the proposed operator lies in evaluating the function's nonlinearity in detail to purposely avoid mutations that could be disruptive and taking advantage of the fact that the nonlinearity of a Boolean function is invariant under all affine transformations. To assess the efficiency of this operator, we experiment with three distinct variants of genetic programming and compare its performance to three other commonly used non-semantic mutation operators. The detailed experimental evaluation proved that the proposed semantic mutation operator is not only significantly more efficient in terms of evaluations required by genetic programming but also nearly three times faster than the second-best operator when designing bent functions with 12 inputs and almost six times faster for functions with 20 inputs.
Název v anglickém jazyce
Semantic Mutation Operator for Fast and Efficient Design of Bent Boolean Functions
Popis výsledku anglicky
Boolean functions are important cryptographic primitives with extensive use in symmetric cryptography. These functions need to possess various properties, such as nonlinearity to be useful. The main limiting factor of the quality of a Boolean function is the number of its input variables, which has to be sufficiently large. The contemporary design methods either scale poorly or are able to create only a small subset of all functions with the desired properties. This necessitates the development of new and more efficient ways of Boolean function design. In this paper, we propose a new semantic mutation operator for the design of bent Boolean functions via genetic programming. The principle of the proposed operator lies in evaluating the function's nonlinearity in detail to purposely avoid mutations that could be disruptive and taking advantage of the fact that the nonlinearity of a Boolean function is invariant under all affine transformations. To assess the efficiency of this operator, we experiment with three distinct variants of genetic programming and compare its performance to three other commonly used non-semantic mutation operators. The detailed experimental evaluation proved that the proposed semantic mutation operator is not only significantly more efficient in terms of evaluations required by genetic programming but also nearly three times faster than the second-best operator when designing bent functions with 12 inputs and almost six times faster for functions with 20 inputs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-13001S" target="_blank" >GA21-13001S: Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Genetic Programming and Evolvable Machines
ISSN
1389-2576
e-ISSN
1573-7632
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
001117604500001
EID výsledku v databázi Scopus
—