On the usage of the Sparse Fourier Transform in ultrasound propagation simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU151033" target="_blank" >RIV/00216305:26230/24:PU151033 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3632047.3632064" target="_blank" >https://dl.acm.org/doi/10.1145/3632047.3632064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3632047.3632064" target="_blank" >10.1145/3632047.3632064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the usage of the Sparse Fourier Transform in ultrasound propagation simulation
Popis výsledku v původním jazyce
The Fourier transform is an algorithm for transforming the signal from the space/time domain into the frequency domain. This algorithm is essential for applications like image processing, communication, medicine, differential equations solvers, and many others. In some of these applications, most of the Fourier coefficients are small or equal to zero. This property of the signals is used by the Sparse Fourier transform which estimates significant coefficients of the signal with a lower time complexity than the Fourier transform. The goal of this paper is to evaluate available implementations of the Sparse Fourier transform on a set of benchmarks solving the ultrasound wave propagation in 1D, 2D, and 3D heterogeneous media. The results show that the fastest available implementation in 1D domains is MSFFT, however, it is not possible to use it in our implementation of the 2D Sparse Fourier transform. Thus the AAFFT 0.9 is selected for our implementation of the 2D Sparse Fourier transform as the most stable and acceptably fast implementation. The results on 3D simulation data show, that by using the SpFFT library it is possible to reduce the computation time of the Fourier transform in ultrasound wave propagation simulation.
Název v anglickém jazyce
On the usage of the Sparse Fourier Transform in ultrasound propagation simulation
Popis výsledku anglicky
The Fourier transform is an algorithm for transforming the signal from the space/time domain into the frequency domain. This algorithm is essential for applications like image processing, communication, medicine, differential equations solvers, and many others. In some of these applications, most of the Fourier coefficients are small or equal to zero. This property of the signals is used by the Sparse Fourier transform which estimates significant coefficients of the signal with a lower time complexity than the Fourier transform. The goal of this paper is to evaluate available implementations of the Sparse Fourier transform on a set of benchmarks solving the ultrasound wave propagation in 1D, 2D, and 3D heterogeneous media. The results show that the fastest available implementation in 1D domains is MSFFT, however, it is not possible to use it in our implementation of the 2D Sparse Fourier transform. Thus the AAFFT 0.9 is selected for our implementation of the 2D Sparse Fourier transform as the most stable and acceptably fast implementation. The results on 3D simulation data show, that by using the SpFFT library it is possible to reduce the computation time of the Fourier transform in ultrasound wave propagation simulation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICBRA '23: Proceedings of the 10th International Conference on Bioinformatics Research and Applications
ISBN
979-8-4007-0815-2
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
107-113
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Barcelona
Datum konání akce
22. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—