A Unified Approach to Real-Time Public Transport Data Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU151136" target="_blank" >RIV/00216305:26230/24:PU151136 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/13127/" target="_blank" >https://www.fit.vut.cz/research/publication/13127/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-60227-6_8" target="_blank" >10.1007/978-3-031-60227-6_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Unified Approach to Real-Time Public Transport Data Processing
Popis výsledku v původním jazyce
The use of real operations data is essential for the planning and management of modern public transport systems. With the expansion of universal formats for describing the structure of public transport systems, such as GTFS or Transmodel, the use of these data has expanded far beyond the public transport domain. On the other hand, the effort to use these data encounters the problem of its processing, storage and integration with the structure of the transport system due to the volume and speed of data generation from real operations. These problems are even more evident in the case of further use of these data as inputs for machine learning, or data mining, where integration of data from different systems into a single model is necessary. The purpose of this paper was to design a method by the which big data from real operations could be integrated with the changing structure of the transport system so that this data could be stored long term without loss of granularity, or entropy value. As a result, we proposed a data model with big data transformation algorithm, whose functionality has been verified in testing over the public transport system of the second largest city in the Czech Republic.
Název v anglickém jazyce
A Unified Approach to Real-Time Public Transport Data Processing
Popis výsledku anglicky
The use of real operations data is essential for the planning and management of modern public transport systems. With the expansion of universal formats for describing the structure of public transport systems, such as GTFS or Transmodel, the use of these data has expanded far beyond the public transport domain. On the other hand, the effort to use these data encounters the problem of its processing, storage and integration with the structure of the transport system due to the volume and speed of data generation from real operations. These problems are even more evident in the case of further use of these data as inputs for machine learning, or data mining, where integration of data from different systems into a single model is necessary. The purpose of this paper was to design a method by the which big data from real operations could be integrated with the changing structure of the transport system so that this data could be stored long term without loss of granularity, or entropy value. As a result, we proposed a data model with big data transformation algorithm, whose functionality has been verified in testing over the public transport system of the second largest city in the Czech Republic.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-3-031-60226-9
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
10
Strana od-do
86-95
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Łódź
Datum konání akce
26. 3. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001267243400008