Machine Learning in Context of IoT/Edge Devices and LoLiPoP-IoT Project
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU151964" target="_blank" >RIV/00216305:26230/24:PU151964 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10716234" target="_blank" >https://ieeexplore.ieee.org/document/10716234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Austrochip62761.2024.10716234" target="_blank" >10.1109/Austrochip62761.2024.10716234</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning in Context of IoT/Edge Devices and LoLiPoP-IoT Project
Popis výsledku v původním jazyce
Machine learning models are traditionally deployed in the cloud or on centralized servers to leverage their computing resources. However, such a deployment may reduce privacy, introduce extra latency, consume more power, etc., and subsequently negatively impact properties of an application that typically runs on a battery-operated device used to communicate via a wireless network. To minimize the negative impact, it is necessary to deploy a model directly to such a device to minimize data transfer energy and run the model closer to the data source and, application and its environment. However, this kind of deployment is a challenging task due to the very limited resources available in such devices and applications. Many people and companies have tackled this challenging problem and proposed different ways and means to solve it. Having defined the problem and our area of interest, the paper provides an overview of representative applications, methods and means, including libraries, frameworks, datasets, devices etc. It then presents a typical deployment process workflow in the context of resource-constrained devices. Finally, it sums representative results for popular resource-constrained devices (e.g., Arduino, ARM Cortex-M, ESP32, nRF5x, Nvidia Jetson, Raspberry Pi) to demonstrate how various phenomena (e.g., model type, setting, quantization) affect model performance (e.g., accuracy, loss), metrics (e.g., ROC AUC, F1 scores) and device performance (e.g., feature and inference processing time, memory usage).
Název v anglickém jazyce
Machine Learning in Context of IoT/Edge Devices and LoLiPoP-IoT Project
Popis výsledku anglicky
Machine learning models are traditionally deployed in the cloud or on centralized servers to leverage their computing resources. However, such a deployment may reduce privacy, introduce extra latency, consume more power, etc., and subsequently negatively impact properties of an application that typically runs on a battery-operated device used to communicate via a wireless network. To minimize the negative impact, it is necessary to deploy a model directly to such a device to minimize data transfer energy and run the model closer to the data source and, application and its environment. However, this kind of deployment is a challenging task due to the very limited resources available in such devices and applications. Many people and companies have tackled this challenging problem and proposed different ways and means to solve it. Having defined the problem and our area of interest, the paper provides an overview of representative applications, methods and means, including libraries, frameworks, datasets, devices etc. It then presents a typical deployment process workflow in the context of resource-constrained devices. Finally, it sums representative results for popular resource-constrained devices (e.g., Arduino, ARM Cortex-M, ESP32, nRF5x, Nvidia Jetson, Raspberry Pi) to demonstrate how various phenomena (e.g., model type, setting, quantization) affect model performance (e.g., accuracy, loss), metrics (e.g., ROC AUC, F1 scores) and device performance (e.g., feature and inference processing time, memory usage).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/9A23012" target="_blank" >9A23012: Long Life Power Platforms for Internet of Things</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 32nd Austrian Workshop on Microelectronics (Austrochip 2024)
ISBN
979-8-3315-1617-8
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
Institute of Electrical and Electronics Engineers, US
Místo vydání
Vienna
Místo konání akce
Vienna
Datum konání akce
25. 9. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
001344861600018