Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning in Context of IoT/Edge Devices and LoLiPoP-IoT Project

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU151964" target="_blank" >RIV/00216305:26230/24:PU151964 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10716234" target="_blank" >https://ieeexplore.ieee.org/document/10716234</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/Austrochip62761.2024.10716234" target="_blank" >10.1109/Austrochip62761.2024.10716234</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning in Context of IoT/Edge Devices and LoLiPoP-IoT Project

  • Popis výsledku v původním jazyce

    Machine learning models are traditionally deployed in the cloud or on centralized servers to leverage their computing resources. However, such a deployment may reduce privacy, introduce extra latency, consume more power, etc., and subsequently negatively impact properties of an application that typically runs on a battery-operated device used to communicate via a wireless network. To minimize the negative impact, it is necessary to deploy a model directly to such a device to minimize data transfer energy and run the model closer to the data source and, application and its environment. However, this kind of deployment is a  challenging task due to the very limited resources available in such devices and applications. Many people and companies have tackled this challenging problem and proposed different ways and means to solve it. Having defined the problem and our area of interest, the paper provides an overview of representative applications, methods and means, including libraries, frameworks, datasets, devices etc. It then presents a  typical deployment process workflow in the context of resource-constrained devices. Finally, it sums representative results for popular resource-constrained devices (e.g., Arduino, ARM Cortex-M, ESP32, nRF5x, Nvidia Jetson, Raspberry Pi) to demonstrate how various phenomena (e.g., model type, setting, quantization) affect model performance (e.g., accuracy, loss), metrics (e.g., ROC AUC, F1 scores) and device performance (e.g., feature and inference processing time, memory usage).

  • Název v anglickém jazyce

    Machine Learning in Context of IoT/Edge Devices and LoLiPoP-IoT Project

  • Popis výsledku anglicky

    Machine learning models are traditionally deployed in the cloud or on centralized servers to leverage their computing resources. However, such a deployment may reduce privacy, introduce extra latency, consume more power, etc., and subsequently negatively impact properties of an application that typically runs on a battery-operated device used to communicate via a wireless network. To minimize the negative impact, it is necessary to deploy a model directly to such a device to minimize data transfer energy and run the model closer to the data source and, application and its environment. However, this kind of deployment is a  challenging task due to the very limited resources available in such devices and applications. Many people and companies have tackled this challenging problem and proposed different ways and means to solve it. Having defined the problem and our area of interest, the paper provides an overview of representative applications, methods and means, including libraries, frameworks, datasets, devices etc. It then presents a  typical deployment process workflow in the context of resource-constrained devices. Finally, it sums representative results for popular resource-constrained devices (e.g., Arduino, ARM Cortex-M, ESP32, nRF5x, Nvidia Jetson, Raspberry Pi) to demonstrate how various phenomena (e.g., model type, setting, quantization) affect model performance (e.g., accuracy, loss), metrics (e.g., ROC AUC, F1 scores) and device performance (e.g., feature and inference processing time, memory usage).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/9A23012" target="_blank" >9A23012: Long Life Power Platforms for Internet of Things</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 32nd Austrian Workshop on Microelectronics (Austrochip 2024)

  • ISBN

    979-8-3315-1617-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-4

  • Název nakladatele

    Institute of Electrical and Electronics Engineers, US

  • Místo vydání

    Vienna

  • Místo konání akce

    Vienna

  • Datum konání akce

    25. 9. 2024

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    001344861600018