A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU152211" target="_blank" >RIV/00216305:26230/24:PU152211 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1741-2552/ad7f8e" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-2552/ad7f8e</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-2552/ad7f8e" target="_blank" >10.1088/1741-2552/ad7f8e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications
Popis výsledku v původním jazyce
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces (BCI). Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
Název v anglickém jazyce
A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications
Popis výsledku anglicky
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces (BCI). Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-10990S" target="_blank" >GA24-10990S: Strojové učení zohledňující hardware: Od automatizovaného návrhu k inovativním a vysvětlitelným řešením</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neural Engineering
ISSN
1741-2560
e-ISSN
1741-2552
Svazek periodika
21
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
001330142400001
EID výsledku v databázi Scopus
2-s2.0-85207348315