LMVSegRNN and Poseidon3D: Addressing Challenging Teeth Segmentation Cases in 3D Dental Surface Orthodontic Scans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154628" target="_blank" >RIV/00216305:26230/24:PU154628 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2306-5354/11/10/1014" target="_blank" >https://www.mdpi.com/2306-5354/11/10/1014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/bioengineering11101014" target="_blank" >10.3390/bioengineering11101014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LMVSegRNN and Poseidon3D: Addressing Challenging Teeth Segmentation Cases in 3D Dental Surface Orthodontic Scans
Popis výsledku v původním jazyce
The segmentation of teeth in 3D dental scans is difficult due to variations in teeth shapes, misalignments, occlusions, or the present dental appliances. Existing methods consistently adhere to geometric representations, omitting the perceptual aspects of the inputs. In addition, current works often lack evaluation on anatomically complex cases due to the unavailability of such datasets. We present a projection-based approach towards accurate teeth segmentation that operates in a detect-and-segment manner locally on each tooth in a multi-view fashion. Information is spatially correlated via recurrent units. We show that a projection-based framework can precisely segment teeth in cases with anatomical anomalies with negligible information loss. It outperforms point-based, edge-based, and Graph Cut-based geometric approaches, achieving an average weighted IoU score of 0.971220.038 and a Hausdorff distance at 95 percentile of 0.490120.571 mm. We also release Poseidon's Teeth 3D (Poseidon3D), a novel dataset of real orthodontic cases with various dental anomalies like teeth crowding and missing teeth.
Název v anglickém jazyce
LMVSegRNN and Poseidon3D: Addressing Challenging Teeth Segmentation Cases in 3D Dental Surface Orthodontic Scans
Popis výsledku anglicky
The segmentation of teeth in 3D dental scans is difficult due to variations in teeth shapes, misalignments, occlusions, or the present dental appliances. Existing methods consistently adhere to geometric representations, omitting the perceptual aspects of the inputs. In addition, current works often lack evaluation on anatomically complex cases due to the unavailability of such datasets. We present a projection-based approach towards accurate teeth segmentation that operates in a detect-and-segment manner locally on each tooth in a multi-view fashion. Information is spatially correlated via recurrent units. We show that a projection-based framework can precisely segment teeth in cases with anatomical anomalies with negligible information loss. It outperforms point-based, edge-based, and Graph Cut-based geometric approaches, achieving an average weighted IoU score of 0.971220.038 and a Hausdorff distance at 95 percentile of 0.490120.571 mm. We also release Poseidon's Teeth 3D (Poseidon3D), a novel dataset of real orthodontic cases with various dental anomalies like teeth crowding and missing teeth.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bioengineering
ISSN
2306-5354
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
001342763600001
EID výsledku v databázi Scopus
2-s2.0-85207679555