LGBM2VHDL: Mapping of LightGBM Models to FPGA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154643" target="_blank" >RIV/00216305:26230/24:PU154643 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/63839172:_____/24:10133691
Výsledek na webu
<a href="http://dx.doi.org/10.1109/FCCM60383.2024.00020" target="_blank" >http://dx.doi.org/10.1109/FCCM60383.2024.00020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FCCM60383.2024.00020" target="_blank" >10.1109/FCCM60383.2024.00020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LGBM2VHDL: Mapping of LightGBM Models to FPGA
Popis výsledku v původním jazyce
Gradient boosting (GB) is an effective and widely used type of ensemble machine-learning method. The opportunity to transform the trained GB models to the hardware level represents the potential for significant acceleration of many applications and their availability as embedded systems. In this work, we have therefore developed the LGBM2VHDL tool for the automated mapping of models trained by the LightGBM library to circuits described by VHDL. Compared to existing tools, we have used an architecture that is better suited for large-scale GB models involving up to thousands of decision trees. We have further optimized the architecture using two newly proposed techniques. By applying these techniques to the tested models, the amount of memory required was significantly reduced to almost half of the original resources, and the amount of basic configurable blocks was reduced by up to 4 times on average. The developed tool is available as open-source.
Název v anglickém jazyce
LGBM2VHDL: Mapping of LightGBM Models to FPGA
Popis výsledku anglicky
Gradient boosting (GB) is an effective and widely used type of ensemble machine-learning method. The opportunity to transform the trained GB models to the hardware level represents the potential for significant acceleration of many applications and their availability as embedded systems. In this work, we have therefore developed the LGBM2VHDL tool for the automated mapping of models trained by the LightGBM library to circuits described by VHDL. Compared to existing tools, we have used an architecture that is better suited for large-scale GB models involving up to thousands of decision trees. We have further optimized the architecture using two newly proposed techniques. By applying these techniques to the tested models, the amount of memory required was significantly reduced to almost half of the original resources, and the amount of basic configurable blocks was reduced by up to 4 times on average. The developed tool is available as open-source.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)
ISBN
979-8-3503-7243-4
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
97-103
Název nakladatele
IEEE Computer Society
Místo vydání
Orlando, FL
Místo konání akce
Orlando, FL
Datum konání akce
5. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—