Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Abstraction-based segmental simulation of reaction networks using adaptive memoization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154883" target="_blank" >RIV/00216305:26230/24:PU154883 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14330/24:00138792

  • Výsledek na webu

    <a href="https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05966-5" target="_blank" >https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05966-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12859-024-05966-5" target="_blank" >10.1186/s12859-024-05966-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Abstraction-based segmental simulation of reaction networks using adaptive memoization

  • Popis výsledku v původním jazyce

    Background Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time. Results We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently. Conclusion We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.

  • Název v anglickém jazyce

    Abstraction-based segmental simulation of reaction networks using adaptive memoization

  • Popis výsledku anglicky

    Background Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time. Results We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently. Conclusion We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BMC BIOINFORMATICS

  • ISSN

    1471-2105

  • e-ISSN

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Kód UT WoS článku

    001351556400001

  • EID výsledku v databázi Scopus

    2-s2.0-85209476640