Abstraction-based segmental simulation of reaction networks using adaptive memoization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154883" target="_blank" >RIV/00216305:26230/24:PU154883 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/24:00138792
Výsledek na webu
<a href="https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05966-5" target="_blank" >https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05966-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12859-024-05966-5" target="_blank" >10.1186/s12859-024-05966-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Abstraction-based segmental simulation of reaction networks using adaptive memoization
Popis výsledku v původním jazyce
Background Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time. Results We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently. Conclusion We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.
Název v anglickém jazyce
Abstraction-based segmental simulation of reaction networks using adaptive memoization
Popis výsledku anglicky
Background Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time. Results We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently. Conclusion We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02328Y" target="_blank" >GJ20-02328Y: CAQtuS: Počítačem podporovaná kvantitativní syntéza</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC BIOINFORMATICS
ISSN
1471-2105
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
001351556400001
EID výsledku v databázi Scopus
2-s2.0-85209476640