Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A neurophysiological model based on resting state EEG functional connectivity features for assessing semantic long-term memory performance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F25%3APU152096" target="_blank" >RIV/00216305:26230/25:PU152096 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1746809424008577?dgcid=coauthor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1746809424008577?dgcid=coauthor</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bspc.2024.106799" target="_blank" >10.1016/j.bspc.2024.106799</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A neurophysiological model based on resting state EEG functional connectivity features for assessing semantic long-term memory performance

  • Popis výsledku v původním jazyce

    Existing methods for assessing long-term memory (LTM) rely predominantly on psychometric tests or clinical expert observations. In this study, we propose an objective method for evaluating semantic LTM ability using resting-state electroencephalography (EEG) functional connectivity. Data from 68 participants were analysed, deriving functional connectivity from the phase information of EEG theta (4-8 Hz), alpha (8-13 Hz) and gamma (30-45 Hz) frequency bands across the entire scalp at resting state. Participants' responses were recorded during a memory recall task over four sessions. Multiple linear regression was used to model the LTM score. The proposed method successfully predicted LTM retention after 30 min, with performance metrics of F(18,49) = 2.216, p = 0.014, R=0.670; 2 months retention, F(18,45) = 3.057, p < 0.001, R=0.742; 4 months retention, F(18,42) = 2.237, p = 0.016, R=0.700; and 6 months retention, F(18,36) = 1.988, p = 0.039, R=0.706, respectively. Additionally, this method achieved at least 27 points lower in the Bayesian Information Criterion (BIC) compared to the standard psychometric RAPM test across all retention periods. These findings suggest that the semantic LTM ability of healthy young individuals can be objectively quantified using resting-state EEG functional connectivity. This approach holds promise for future applications in understanding and addressing below standard performance in students learning.

  • Název v anglickém jazyce

    A neurophysiological model based on resting state EEG functional connectivity features for assessing semantic long-term memory performance

  • Popis výsledku anglicky

    Existing methods for assessing long-term memory (LTM) rely predominantly on psychometric tests or clinical expert observations. In this study, we propose an objective method for evaluating semantic LTM ability using resting-state electroencephalography (EEG) functional connectivity. Data from 68 participants were analysed, deriving functional connectivity from the phase information of EEG theta (4-8 Hz), alpha (8-13 Hz) and gamma (30-45 Hz) frequency bands across the entire scalp at resting state. Participants' responses were recorded during a memory recall task over four sessions. Multiple linear regression was used to model the LTM score. The proposed method successfully predicted LTM retention after 30 min, with performance metrics of F(18,49) = 2.216, p = 0.014, R=0.670; 2 months retention, F(18,45) = 3.057, p < 0.001, R=0.742; 4 months retention, F(18,42) = 2.237, p = 0.016, R=0.700; and 6 months retention, F(18,36) = 1.988, p = 0.039, R=0.706, respectively. Additionally, this method achieved at least 27 points lower in the Bayesian Information Criterion (BIC) compared to the standard psychometric RAPM test across all retention periods. These findings suggest that the semantic LTM ability of healthy young individuals can be objectively quantified using resting-state EEG functional connectivity. This approach holds promise for future applications in understanding and addressing below standard performance in students learning.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Signal Processing and Control

  • ISSN

    1746-8094

  • e-ISSN

    1746-8108

  • Svazek periodika

    99

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001313705500001

  • EID výsledku v databázi Scopus

    2-s2.0-85203428307